Journal of the Korean Industrial and Engineering Chemistry, Vol.13, No.3, 268-273, May, 2002
실리카 나노 필러의 표면 처리 최적화를 통한 고분자 치아수복재의 제조와 기계적 물성
Preparation and Mechanical Properties of Polymeric Dental Restorative Composite Through The Optimization of Surface Treatment of Silica Nanofiller
E-mail:
초록
최근 치과용 수복 재료로 널리 이용되고 있는 고분자계 치아 수복재(polymeric dental restorative composite, PDRC)의 기계적 성질을 좌우하는 요소 중의 하나인 필러의 표면 처리 최적화를 통해 고품격의 PDRC를 제조하고 이들의 기계적 물성을 분석하여 고찰하였다. 친수성을 가진 크기가 40 nm인 실리카 nanofiller의 소수성 표면 처리에 사용된 결합제는 γ-methacryloylpropyltrimethoxysilane (γ-MPS)로서 필러를 기준으로 각각 0, 5, 8, 10, 20 wt%까지 변화시켜 표면 처리 최적화 실험에 사용하였으며 적외선분광분석과 표면 접촉각 측정을 통해 표면 처리된 필러의 소수성을 평가하였다. 각기 다른 γ-MPS 농도로 처리된 실리카 nanofiller를 사용하여 제조한 PDRC의 기계적 물성을 평가한 결과, 10 wt% γ-MPS를 사용한 경우가 가장 최적의 간접인장강도와 굴곡강도 값을 나타냄을 알 수 있었다.
The preparation of novel functional polymeric dental restorative composite (PDRC) was carried out using fumed silica nanofiller. To optimize the surface properties of hydrophilic silica nanofiller having a diameter of 40 nm, its surface was treated with a variety of concentrations of v-methacryloxypropyltrimethoxysilane (v-MPS) coupling agent: from 0 to 5,8,10, and 20 wt% of the nanofiller. Effect of v-MPS content on the hydrophobic characteristics of silica nanofiller was investigated using fourier transform infrared spectroscopy and surface contact angle measurement. Mechanical properties of PDRC that was prepared by v-MPS treated silica nanofiller were also measured. Results of diametral tensile strength and flexural strength measurements showed that optimum concentration of v-MPS was at 10 wt% of silica nanofiller.
- Ferracane JL, Greener EH, J. Biomed. Mater. Res., 20, 121 (1986)
- Ferracane JL, Mitchem JC, Condon JR, Todd R, J. Dent. Res., 76, 1508 (1997)
- Peutzfeldt A, Asmussen E, J. Dent. Res., 71, 1847 (1992)
- Combe EC, Burke FJT, Douglas WH, Dental Materials, Kluwer Academic Publishers, Boston (1999)
- Elliott JE, Lovell LG, Bowman CN, Dent. Mater., 17, 221 (2001)
- Anusavice KJ, Phillips' Science of Dental Materials, Saunders, London (1996)
- Eley BM, Brit. Dent. J., 183(1), 11 (1997)
- Nicholson JW, Int. J. Adhes. Adhes., 20(1), 11 (2000)
- U.S. Patent, 3,066,112 (1962)
- Williams DF, Materials Science and Technology, Vol. 14, VCH, Cambridge, U.K., 209 (1992)
- Craig RG, Restorative Dental Materials, 8th ed., CV Mosby, St. Louis, U.S.A., 514 (1989)
- Luts F, Phillips RW, J. Prosth. Dent., 50, 480 (1983)
- Phillips RW, Skinner's Science of Dental Materials, 8th ed., Igaku-Shoin/Saunders, 177 (1982)
- Luts F, Krejci I, Phillip J., 4, 127 (1987)
- Burke FJT, Watts DC, Wilson NHF, Wilson MA, Brit. Dent. J., 170, 269 (1991)
- Cook WD, Johannson M, J. Biomed. Mater. Res., 21, 979 (1987)
- Ruyter IE, Oysaed H, Analysis and Characterization of Dental Polymers, CRC Critical Reviews in biocompatibility, 4(3), 247 (1988)
- Ruyter IE, Oysaed H, Acta Odont. Scand., 40, 179 (1982)
- Jang J, Ph.D. Dissertation, Case Western Reserve University, U.S.A. (1988)
- Kim O, Lee T, J. Korean Ind. Eng. Chem., 12(1), 65 (2001)
- Kim O, Lee T, J. Ind. Eng. Chem., 7(2), 78 (2001)
- Kim O, Shim WJ, J. Polym. Res., 8(1), 49 (2001)
- Peutzfeldt A, Eur. J. Oral. Sci., 105, 97 (1997)
- Davy KWM, Kalachandra S, Pandain MS, Braden M, Biomaterials, 19, 2007 (1998)
- Counsil on Dental Materials and Devices, New American Dental Association Specification No. 27 for Direct Filling Resins, J. Am. Dent. Assoc., 97, 1191 (1977)
- Dentistry-Resin based filling materials, ISO Specification No. 4049 (1978)
- Horr TJ, Ralston J, Smart RC, Colloids Surf. A: Physicochem. Eng. Asp., 97, 183 (1995)
- Jang J, Kim S, Polym. J., 28(4), 293 (1996)
- Kim O, Shim WJ, Polym. Compos., 22(5), 650 (2001)