Automatica, Vol.38, No.5, 853-860, 2002
Identification of linear systems with hard input nonlinearities of known structure
This paper studies identification of systems with input nonlinearities of known structure. For input nonlinearities parameterized by one parameter, a deterministic approach is proposed based on the idea of separable least squares. The identification problem is shown to be equivalent to an one-dimensional minimization problem. The method is very effective for several common static and nonstatic input nonlinearities. For a general input nonlinearity, a correlation analysis based identification algorithm is presented which is shown to be convergent.