Journal of the Korean Industrial and Engineering Chemistry, Vol.13, No.4, 345-350, June, 2002
제올라이트 X/활성탄 복합체의 CO2 흡착 특성 연구
Adsorption Characteristics of CO2 on Zeolite X/activated Carbon Composite
E-mail:
초록
왕겨를 출발 원료로 하여 제올라이트 X/활성탄 복합체(제오카본)를 합성하였으며, 합성된 복합체와 제올라이트 X에 대한 CO2 흡착 특성을 비교하였다. 합성된 시료의 결정도와 구조 형태는 X-선 회절분석(XRD)과 주사전자 현미경(SEM)으로 분석하였으며, 질소 흡/탈착 등온선으로부터 구한 비교면적과 기공 크기는 620 m(2)/g와 30 Å 이다. 제오카본의 CO2 흡착등온선에 Langmuir 모델, Langmuir-Freundlich 모델, Toth 모델을 적용한 결과 Langmuir-Freundlich 모델과 Toth 모델이 평균 상대 오차가 2% 이내로 잘 일치하였으며, 흡착평형 특성은 제올라이트 X의 결과와 유사하였다. CO2 흡착평형 데이터로부터 Clausius-Clapeyron식을 이용하여 구한 등량 흡착열은 제오카본의 경우 1.8~8 kcal/mol로서 제올라이트 X에 비하여 높았다.
Zeolite X/activated carbon composite(zeocarbon) was synthesized from rice hulls. The adsorption equilibrium of CO2 on zeocarbon was compared with that of zeolite X. The characterization for crystallinity and morphology of zeocarbon has been carried out by means of XRD and SEM. The specific surface area and pore size distributions of zeocarbon were calculated from the nitrogen adsorption/desorption isotherms. The synthesized material have shown specific surface area of 620 m(2)/g and BJH average pore diameter 30 Å. CO2 isotherms on zeocarbon and zeolite X were well fitted with Toth and Langmuir-Freundlich model within 2% average relative deviation. The isosteric heats of adsorption obtained from the adsorption equilibrium results of zeocarbon were in the range of 1.8~8 kcal/mol. It was about 50% higher than those of zeolite X.
- Yang RT, Gas Separation by Adsorption Processes Butterworths (1987)
- Ahn HW, Park MK, Park DS, Lee CH, HWAHAK KONGHAK, 36(2), 169 (1998)
- Ruthven DM, Principles of Adsorption and Adsorption Processes, John Wiley and Sons (1984)
- Breck DW, Zeolite Molecular Sieves, John Wiley and Sons (1974)
- Kalapathy U, Proctor A, Shultz J, J. Bioresouce Technol., 72, 99 (2000)
- Kalapathy U, Proctor A, Shultz J, J. Bioresouce Technol., 73, 257 (2000)
- Ko YS, Ahn WS, HWAHAK KONGHAK, 31(6), 707 (1993)
- Korea Patent, 공개번호26809 (1995)
- Pendyal B, Johns MM, Marshall WE, Ahmedna M, Rao RM, Bioresource Technol., 69, 45 (1999)
- Pendyal B, Johns MM, Marshall WE, Ahmedna M, Rao RM, Bioresource Technol., 71, 113 (2000)
- Ahn HW, Park JS, Koo KK, Lee CH, HWAHAK KONGHAK, 37(3), 364 (1999)
- Yun JH, Hwang KY, Choi DK, J. Chem. Eng. Data, 43(5), 843 (1998)
- Ruthven DM, Farooq S, Knaebel KS, Pressure Swing Adsorption, VCH Press (1994)
- Valenzuela DP, Myers AL, Adsorption Equilibrium Data Handbook, Englewood Cliff, N.J., Prentice-Hall (1989)
- Duong DD, Adsorption Analysis: Equilibria and Kinetics, Imperial Colleage Press (1998)
- Gregg SJ, Sing KSW, Adsorption, Surface Area and Porosity, Academic Press (1982)
- Lowell S, Shields JE, Powder Surface Area and Porosity, Brian Scarlett (1994)
- Myers AL, Fundamentals of Adsorption, Eng. Foundation, New York 365 (1984)
- Ross S, Oliver JP, On Physical Adsorption, Interscience, New York (1964)
- Garg DR, Ruthven DM, Chem. Eng. Sci., 30, 437 (1975)
- Ruthven DM, Chem. Eng. Sci., 47, 4305 (1992)
- Garg DR, Ruthven DM, Chem. Eng. Sci., 27, 417 (1972)
- Adolphs J, Setzer MJ, J. Colloid Interface Sci., 184(2), 443 (1996)