화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.19, No.3, 495-504, May, 2002
Rapid Growth of Particles by Coagulation Between Particles in Silane Plasma Reactor
E-mail:
The changes of particle size distribution were investigated during the rapid growth of particles in the silane plasma reactor by the discrete-sectional model. The particle size distribution becomes bimodal in the plasma reactor and most of the large sized particles are charged negatively, but some fractions of small sized particles are in a neutral state or even charged positively. As the mass generation rate of monomers increases or as the monomer diameter decreases, the large sized particles grow more quickly and the particle size distribution becomes bimodal earlier. As the mass generation rate of monomers decreases, the electron concentration in the plasmas increases and the fraction of particles charged negatively increases. With the decrease in monomer diameter, the electron concentration decreases in the beginning of plasma discharge but later increases.
  1. Bouchoule A, Boufendi L, Plasma Sources Sci. Technol., 3, 292 (1994) 
  2. Boufendi L, Bouchoule A, Plasma Sources Sci. Technol., 3, 262 (1994) 
  3. Childs MA, Gallagher A, J. Appl. Phys., 87, 1076 (2000) 
  4. Choi SJ, Kushner MJ, J. Appl. Phys., 74(2), 853 (1993) 
  5. Friedlander SK, "Smoke, Dust and Haze," Wiley-Interscience, New York (1977)
  6. Graves DB, Daugherty JE, Kilgore MD, Porteous RK, Plasma Sources Sci. Technol., 3, 433 (1994) 
  7. Gelbard F, Tambour Y, Seinfeld JH, J. Colloid Interface Sci., 76(2), 541 (1980) 
  8. Gordiets BF, Ferreira CM, J. Appl. Phys., 86(8), 4118 (1999) 
  9. Goree J, Plasma Sources Sci. Technol., 3, 400 (1994) 
  10. Horanyi M, Goertz CK, Astrophys. J., 361, 155 (1990) 
  11. Howling AA, Sansonnens L, Dorier JL, Hollenstein C, J. Phys. D: Appl. Phys., 26, 1003 (1993) 
  12. Hung FY, Kushner MJ, J. Appl. Phys., 81(9), 5960 (1997) 
  13. Kim DJ, Kim KS, Jpn. J. Appl. Phys., 36, 4989 (1997) 
  14. Kim DJ, Kim KS, Aerosol Sci. Technol., 32, 293 (2000) 
  15. Kim KS, Ikegawa M, Plasma Sources Sci. Technol., 5, 311 (1996) 
  16. Kim KS, Kim DJ, J. Appl. Phys., 87(6), 2691 (2000) 
  17. Kortshagen U, Bhandarkar U, Phys. Rev. E, 60(1), 887 (1999) 
  18. Landgrebe JD, Pratsinis SE, J. Colloid Interface Sci., 139(1), 63 (1990) 
  19. Lieberman MA, Lichtenberg AJ, "Principles of Plasma Discharges and Materials Processing," Wiley-Interscience, New York (1994)
  20. Matsoukas T, Russell M, Smith M, J. Vac. Sci. Technol. A, 14(2), 624 (1996) 
  21. Riggs JB, "An Introduction to Numerical Methods for Chemical Engineers," Texas Tech University Press, Texas (1988)
  22. Samsonov D, Goree J, J. Vac. Sci. Technol. A, 17(5), 2835 (1999) 
  23. Selwyn GS, Semicond. Int., 16, 72 (1993)
  24. Selwyn GS, Plasma Sources Sci. Technol., 3, 340 (1994) 
  25. Shiratani M, Kawasaki H, Fukuzawa T, Tsuruoka H, Yoshioka T, Ueda Y, Singh S, Watanabe Y, J. Appl. Phys., 79(1), 104 (1996) 
  26. Watanabe Y, Plasma Phys. Control. Fusion, 39, A59 (1997) 
  27. Wu CY, Biswas P, Aerosol Sci. Technol., 29, 359 (1998) 
  28. Wu JJ, Flagan RC, J. Colloid Interface Sci., 123(2), 339 (1988)