화학공학소재연구정보센터
HWAHAK KONGHAK, Vol.40, No.3, 377-381, June, 2002
주형을 이용한 실리카 나노구조체 합성
Template Synthesis of Silica Nanostructures
E-mail:
초록
나노미터 직경을 갖는 침상형의 주형(hydroxyapatite)을 이용한 새로운 접근 방법으로 실리카 나노구조체를 졸-겔법을 근간으로 합성하였다. 본 합성법은 나노전구체(실리카 피복 주형) 제조, 나노전구체 소성 및 주형제거 과정으로 구성되어 있다. 나노전구체에 대한 주사 전자현미경(SEM), 투과 전자현미경(TEM), X-선 회절 분석(XRD) 및 광전자 분광 분석(XPS) 결과를 통해 주형 표면에 실리카가 피복되어 있음을 확인할 수 있었다. 또한, 고분해능 XPS 분석에 의해 관찰되는 넓고 비대칭적인 O 1s 스펙트럼의 curve-fitting을 검토한 결과 나노전구체 표면에 여러 종류의 산소가 존재함을 보였다. 또한, 에너지 분산 X-선 분석(EDS)을 통해 나노구조체는 실리콘과 산소로 조성되어 있음을 확인할 수 있었다. 실리카 나노구조체 직경은 대부분 50-200 nm 정도로 주형의 직경과 동일한 양상을 보였다. 이상의 결과를 통해 본 연구에서 제안한 방법이 나노구조체의 새로운 합성방법으로써 적용 가능함을 확인할 수 있었다.
A novel technique for the synthesis of silica nanostructures with needle-like template, hydroxyapatite, having nanometer diameter was investigated in this study. The synthetic method consisted of the following main steps: the preparation of nanoprecursor(silica-coated templates), the calcination of nanoprecursor and the removal of templates. The analysis results of scanning electron microscopy(SEM), transmission electron microscopy(TEM), X-ray diffraction(XRD) and X-ray photoelectron spectroscopy(XPS) for nanoprecursor revealed that silica particles were deposited onto the surface of templates. Further examinations(curve-fitting processing) of the asymmetrical broadening of O 1s peaks in the XPS spectra indicate the presence of multiple oxygen species on the surface. Energy dispersive X-ray spectroscopy(EDS) result confirmed that nanostructures were composed of silicon and oxygen. The diameters of the synthesized nanostructures, mainly in the range of 50-200 nm, correspond to the diameters of the templates. The results confirm that the proposed technique in this study can be utilized as a new method to fabricate the nanostructures.
  1. Iijima S, Nature, 354, 56 (1991) 
  2. Morales AM, Lieber CM, Science, 279(5348), 208 (1998) 
  3. Zhang Y, Suenaga K, Colliex C, Iijima S, Science, 281, 973 (1998) 
  4. Satishkumar BC, Govindaraj A, Vogl EM, Basumallick L, Rao NR, J. Mater. Res., 12(3), 604 (1997)
  5. Lakshmi BB, Dorhout PK, Martin CR, Chem. Mater., 9, 857 (1997) 
  6. Schlottig F, Textor M, Georgi U, Roewer G, J. Mater. Sci. Lett., 18(8), 599 (1999) 
  7. Zhang M, Bando Y, Wada K, Kurashima K, J. Mater. Sci. Lett., 18(23), 1911 (1999) 
  8. Okazaki M, Yoshida Y, Yamaguchi S, Kaneno M, Elliott JC, Biomaterials, 22, 2459 (2000) 
  9. Chen CC, Yen FS, J. Mater. Sci., 29(12), 3215 (1994) 
  10. Walters MA, Leung YC, Blumenthal NC, LeGeros RZ, Konsker KA, J. Inorg. Biochem., 39, 193 (1990) 
  11. Joschek S, Nies B, Krotz R, Gopferich A, Biomaterials, 21, 1645 (2000) 
  12. Costa TMH, Callas MR, Benvenutti EV, Da Jornada JAH, J. Non-Cryst. Solids, 220, 195 (1997) 
  13. Kamistos EI, Patsis MA, Kordas GP, Phys. Rev., B, Condens. Matter, 48, 12499 (1993)
  14. Wood DI, Rabinovich EM, Appl. Spectrosc., 43, 263 (1989) 
  15. Moulder JF, Stickle WF, Sobol PE, Bomben KD, "Handbook of X-Ray Photoelectron Spectroscopy," 2nd ed., Chastain, J. and King, Jr. R.C., Physical Electronics. Inc., Eden Prairie, MN (1995)
  16. Xiao SJ, Textor M, Spencer ND, Wieland M, Keller B, Sigrist H, J. Mater. Sci. Mater. Med., 8, 867 (1997) 
  17. Clarke TA, Rizkalla EN, Chem. Phys. Lett., 37, 523 (1976) 
  18. Milella E, Cosentino F, Licciulli A, Massaro C, Biomaterials, 22, 1425 (2001)