Rheologica Acta, Vol.40, No.4, 384-394, 2001
Influence of molecular structure on secondary flow of polyolefin melts as investigated by laser-Doppler velocimetry
Laser-Doppler velocimetry (LDV) is applied to investigate velocity profiles in the entrance region of a slit die. Due to the high spatial resolution of the device and the accuracy of the velocity measurements the secondary flow patterns of different polyolefins have quantitatively been analyzed for the first time. A linear polyethylene is compared with two long-chain branched polyethylenes and a conventional linear polypropylene with a long-chain branched one. All materials are rheologically characterized with respect to their viscosity functions, elasticity, and elongational properties. For the two linear materials no indication of secondary flow is found, but the three long-chain branched polymers (two polyethylenes and one polypropylene) exhibit pronounced vortices. Neither viscosity nor elasticity seem to be decisive for the occurrence of secondary flow. The viscosity has an influence, however, on the size of the vortices and the velocities within theta. All of the three long-chain branched polymers are strongly strain hardening which gives rise to the conclusion that this behavior may be a necessary condition for the formation of vortices. The linear polypropylene does not show any indication of strain hardening. The linear polyethylene, surprisingly, is significantly strain hardening, but it becomes less pronounced with higher strain rates. As most of the deformation in the entrance region takes place at elongational rates at which the strain hardening of the linear polyethylene is not significant, the findings on the linear polyethylene do not contradict the hypothesis that strain hardening and vortex formation in entrance flow may be related to each other.