화학공학소재연구정보센터
Polymer(Korea), Vol.26, No.4, 422-430, July, 2002
Bis-hydroxyethyl Naphthalate의 축중합 반응에 관한 속도론적 연구
Kinetic Study on the Polycondensation Reaction of Bis-hydroxyethyl Naphthalate
E-mail:
초록
Antimony trioxide 촉매를 사용하여 241 - 260 ℃ 범위에서 bishydroxyethyl naphthalate (BHEN)의 축중합 반응에 관한 속도론적 연구를 수행하였다. 반응은 회분식 반응기에서 진행되었고 반응물의 농도는 high performance liquid chromatography (HPLC)를 사용하여 측정하였다. 분자종 모델을 적용하여 구한 반응속도상수의 정반응 및 역반응 활성화 에너지 값은 각각 19.7과 31.4 kcal/mole이었으며, 평형상수는 1.4-2.0으로 PET 축중합 반응의 경우보다 큰 값을 가지며 온도에 따라 어느 정도 변하였다. 말단기인 hydroxyethyl기의 반응속도는 분자의 크기에 관계없이 일정함을 Flory 모델식으로부터 확인할 수 있었다. 관능기 모델을 적용한 결과 정반응과 역반응 활성화 에너지 값이 큰 차이가 없었으며, 평형상수는 1.4정도의 값을 가졌다. 관능기 모델로부터 구한 속도상수 값은 분자종 모델로부터 구한 값의 3-4배로서 두 모델이 모두 반응계를 잘 설명하였다. 제안된 분자종 모델이 10개의 분자종을 모두 예측해야 하는 어려움에도 불구하고 실험 결과와 잘 맞음을 알 수 있었다.
The kinetics of polycondensation of bishydroxyethyl naphthalate has been studied in the range of 241 - 260 ℃ using antimony trioxide catalyst. The reaction was performed in a batch reactor and the concentration of reaction mixture was measured with HPLC. The activation energy values of forward and reverse reaction determined from molecular species model were found to be 19.7 and 31.4 kcal/mole, respectively, and the equilibrium constants were in the range of 1.4-2.0, which were larger than that of polycondensation of PET and varied to some degree with temperature. It was confirmed by applying the Flory's distribution function that the reaction rate of the hyroxyethyl group does not depend on the molecular size. By applying functional group model, we observed that there was few difference between the activation energy of the forward reaction and that of reverse reaction, therefore the equilibrium constant has almost constant value of 1.4. The rate constants obtained from functional group model was about 3-4 times larger than that from molecular species model, which showed that both model explains the reaction system well. Although the molecular species model should predict the concentration of as many as ten molecules, it fits for the experimental results well.
  1. Park SS, Im SS, Kim DK, Polym.(Korea), 17(3), 324 (1993)
  2. Park SS, Im SS, Kim DK, J. Polym. Sci. A: Polym. Chem., 32(15), 2873 (1994) 
  3. Wang CS, Sun YM, J. Polym. Sci. A: Polym. Chem., 32(7), 1295 (1994) 
  4. Sho SY, Cheong SI, Polym.(Korea), 25(1), 25 (2001)
  5. Wang CS, Sun YM, J. Polym. Sci. A: Polym. Chem., 32(7), 1305 (1994) 
  6. Park SS, In SS, Kim DK, Huh JR, Polym.(Korea), 17(5), 588 (1993)
  7. Park SS, Im SS, Bull. Korean Chem. Soc., 16(11), 1099 (1995)
  8. Stevenson RW, Nettleton HR, J. Polym. Sci. A: Polym. Chem., 6, 889 (1968) 
  9. Stevenson RW, J. Polym. Sci. A: Polym. Chem., 7, 395 (1969) 
  10. Fontana CM, J. Polym. Sci. A: Polym. Chem., 6, 2343 (1968) 
  11. Tomita K, Polymer, 14, 50 (1973) 
  12. Yokoyama H, Sano T, Chijiiwa T, Kajiya R, J. Jpn. Petrol. Inst., 21(1), 58 (1978)
  13. Lei GD, Choi KY, Ind. Eng. Chem. Res., 31(3), 767 (1992)
  14. Cheong SI, Choi KY, J. Appl. Polym. Sci., 58(9), 1473 (1995) 
  15. Ravindranath K, Mashelkar RA, J. Appl. Polym. Sci., 27, 2625 (1982) 
  16. Ravindranath K, Mashelkar RA, Polym. Eng. Sci., 24(1), 31 (1984)
  17. Kumar A, Gupta SK, Gupta B, Kunzru D, J. Appl. Polym. Sci., 27, 4421 (1982) 
  18. Gupta SK, Ghosh AK, Gupta SK, Kumar A, J. Appl. Polym. Sci., 29, 3217 (1984) 
  19. Besnoin JM, Choi KY, J. Macromol. Sci.-Rev. Macromol. Chem. Phys., C29(1), 55 (1989)
  20. Ravindranath K, Mashelkar RA, J. Appl. Polym. Sci., 26, 3179 (1981) 
  21. Barandiaran MJ, Asua JM, J. Polym. Sci. A: Polym. Chem., 27, 4241 (1989) 
  22. Zaborsky LM, Anal. Chem., 49(8), 1166 (1977) 
  23. Challa G, Makromol. Chem., 38, 138 (1960)