화학공학소재연구정보센터
Journal of Chemical Physics, Vol.117, No.6, 2771-2781, 2002
X-ray absorption spectroscopy studies of ionic association in aqueous solutions of zinc bromide from normal to critical conditions
Ion-pairing and dehydration phenomena occurring in ZnBr2 aqueous solutions from normal to critical T, P conditions were investigated by x-ray absorption spectroscopy. The respective influences of temperature, pressure, and concentration were studied. The evolution of the density of solute ions, probed by the height of the absorption edge, allowed us to get information on phase diagrams and salt precipitation. The average structural evolution deduced from extended x-ray absorption fine structure was related to the formation of complexes identified from x-ray absorption near edge structure analysis. Consequently, in noncritical conditions, an increase of temperature or concentration produces dehydration and ion-pairing, while a rise of pressure destroys the ion-pairs. In contrast, concentration and pressure have weaker effects on the local order in high P, T conditions. Moreover, ion pairing formation is found not to be specifically enhanced when the fluid is close to supercritical conditions as it also occurs at lower temperatures. In a discussion, the modifications induced by a variation of the different structural parameters are related to the macroscopic properties of the solvent.