Journal of Physical Chemistry B, Vol.106, No.12, 3237-3247, 2002
Mutual synchronization of molecular turnover cycles in allosteric enzymes III. Intramolecular cooperativity
In small micrometer volumes typical of living cells, regulatory molecules of enzymic reactions can diffuse so fast from one enzyme molecule to another that the diffusion time is much shorter than the turnover time of an enzyme. Under these conditions, a special kinetic regime of a molecular network is realized. We consider molecular networks formed by allosteric enzymes with several functional subunits, interactions between which are described by a sequential model of Koshland et al. with heterotropic or homotropic (positive and negative) cooperativities. Simple product-activated and product-inhibited reactions a-re investigated. We show that allosteric cross-molecular regulation and intramolecular cooperativity result in the development of coherent dynamics of enzyme molecules in such networks. Intermolecular synchronization of turnover cycles of different enzymes is accompanied by intramolecular synchronization of the dynamics of subunits belonging to the same molecules. Strong intramolecular correlations persist even at high intensity of thermal molecular fluctuations, when intermolecular synchronization is already absent.