화학공학소재연구정보센터
HWAHAK KONGHAK, Vol.32, No.5, 686-692, October, 1994
다공성 기체 확산 전극의 유효성인자
Effectiveness Factor for Porous Gas Diffusion Electrode
초록
덩어리 모델(agglomerate model)로써 표현될 수 있는 다공성 기체 확산 전극의 유효성인자에 대해서 조사하였다. 유효성인자는 확산 저항이 있는 전극에서 실제로 생성되는 전류와 확산 저항이 없는 경우에 생성되는 전류의 비로 정의하였다. 반응 속도, 확산 계수와 덩어리 크기 등 시스템의 여러 가지 변수들을 세 개의 무차원 파라미터로 나타내었고, 이들이 유효성인자에 미치는 영향을 살펴보았으며 전극의 두께가 늘어나도 유효성인자가 더 이상 커지지 않는 지점이 존재함을 볼 수 있었다.
Effectiveness factor which was defined as the ratio of the current produced by the electrode under diffusional resistance to that produced by the electrode without diffusional resistance was investigated for porous gas diffusion electrode described by agglomerate model. System variables including reaction rate, diffusion coefficient, and agglomerate size were combined into three dimensionless parameters, and their effects on effectiveness factor were studied. Effectiveness factor reaches a maximum value with a critical electrode thickness.
  1. Austin LG, Ariet M, Walker RD, Wood GB, Comyn RH, Ind. Eng. Chem. Fundam., 4(3), 321 (1965) 
  2. El-Anadouli BE, Ateya BG, "Modeling of Batteries and Fuel Cells," Edited by R.E. White et al., Electrochemical Society, Inc., 1 (1991)
  3. Newman JS, "Electrochemical Systems," 2nd ed., Prentice Hall, Englewood Cliffs, NJ (1991)
  4. Srinivasan S, Hurwitz HD, Electrochim. Acta, 12, 495 (1967) 
  5. Wilemski G, J. Electrochem. Soc., 30(1), 117 (1983) 
  6. Grens EA, Ind. Eng. Chem. Fundam., 5(4), 542 (1966) 
  7. Burshtein RC, Markin VX, Pshenichnikov AG, Chismadzev VA, Chirkov YG, Electrochim. Acta, 9, 773 (1964) 
  8. Giner J, Hunter C, J. Electrochem. Soc., 116, 1124 (1969)
  9. Yuh CY, Selman JR, J. Electrochem. Soc., 131(9), 2062 (1984) 
  10. Kunz HR, Bregoli LJ, Szymanski ST, Accounts Chem. Res., 131(12), 2815 (1984)