화학공학소재연구정보센터
Langmuir, Vol.18, No.7, 2727-2736, 2002
On the stability of the common and Newton black films
The effect of electrolyte concentration on the transition from common to Newton black films and the stability of both types of films are explained using a model in which the interaction energy for films with planar interfaces is obtained by adding to the classical DLVO forces the hydration force. The theory takes into account the reassociation of the charges of the interface with the counterions as the electrolyte concentration increases and their replacements by ion pairs. This affects both the double layer repulsion, because the charge on the interface is decreased, and the hydration repulsion, because the ion pair density is increased by increasing the ionic strength. The theory also accounts for the thermal fluctuations of the two interfaces. Each of the two interfaces is considered as formed of small planar surfaces with a Boltzmannian distribution of the interdistances across the liquid film. The area of the small planar surfaces is calculated on the basis of a harmonic approximation of the interaction potential. It is shown that the fluctuations decrease the stability of both kinds of black films.