HWAHAK KONGHAK, Vol.32, No.6, 778-783, December, 1994
수증기 부활에 의한제조된 활성탄소섬유의 세공특성
Microporosity of Activated Carbon Fiber Prepared by Steam Activation
초록
수증기 부활에 의해 핏치계 활성탄소섬유를 제조하였다. 제조된 활성탄소섬유는 Type-I의 등온흡착특성을 나타내었으며 주로 미세기공으로 형성되어 있었다. Burn-off 50%이상인 경우에 비표면적이 1,500M2/g이상의 활성탄소섬유를 제조할 수 있었으며 동일한 burn-off에서는 저온활성화 조건에서 제조한 것이 고온에서 제조한 것보다 높은 비표면적을 가졌다. Horwath-Kawazoe법으로 측정한 결과 활성탄소섬유는 매우 좁은 기공 분포를 가지고 있었으며 burn-off의 증가와 함께 기공의 분포도 넓어지는 경향을 보았다.
Pitch-based activated carbon fibers(ACF) were prepared by steam activation under various conditions. The adsorption isotherm of ACF measured by nitrogen adsorption at 77 K was Type I and ACFs were composed of mainly micropores. The specific surface area of ACF was higher than 1,500㎡/g at burn-off 50%. At the same burn-off %, ACF with higher specific surface area can be prepared under lower activation temperature. The pore size distribution of ACF determined by Horwath-Kawazoe method was very narrow for each samples.
- Lin RY, Economy J, Appl. Polym. Symp., 21, 143 (1973)
- Economy J, Lin RY, Appl. Polym. Symp., 29, 199 (1976)
- U.S. Patent, 3,849,332 (1974)
- U.S. Patent, 4,285,831 (1981)
- German Patent, DE 3,339,756 A1
- U.S. Patent, 3,847,833 (1974)
- Kim YO, Ko KR, Park YT, Ryu SK, HWAHAK KONGHAK, 30(3), 347 (1992)
- Ryu SK, Jin HK, Rhee BS, Morinobu E, Proc. 20th Conf. on Carbon, Santa Barbara, U.S.A., June, p. 286 (1991)
- Horwath G, Kawazoe K, J. Chem. Eng. Jpn., 16, 470 (1983)
- Everett DH, Powl JC, J. Chem. Soc.-Faraday Trans., 72, 619 (1976)
- Pierce C, Wiley JW, Smith RN, J. Phys. Chem., 53, 669 (1949)
- Dubinin MM, Q. Rev. Chem. Soc., 9, 101 (1955)
- Rodriguez-Reiniso F, Linres-Solano A, Physics and Chemistry of Carbon, Vol. 21, p. 21, P.L. Walker Jr. ed., Dekker, N.Y. (1989)
- Dubinin MM, Physics and Chemistry of Carbon, Vol. 2, p. 51, P.L. Walker Jr. ed., Dekker, N.Y. (1968)
- Linres-Solano A, Carbon and Coal Gasification, p. 137, A. Moulijin, ed., Martinus Nijihoff, Dordrech, Netherland (1986)