Chemical Engineering Science, Vol.57, No.9, 1599-1606, 2002
Analysis of a discontinuously operated chromatographic reactor
The principle of a discontinuously operated chromatographic reactor was studied experimentally and theoretically. The heterogeneously catalysed hydrolysis of methyl formate was chosen as a model reaction. An acidic ion exchange resin was used as catalyst and adsorbent. The relevant adsorption equilibrium constants were available from a previous study. In this work the reaction rates were quantified on the basis of batch reactor experiments. Subsequently, systematic experiments were carried out using a fixed bed. The influence of temperature, residence time, feed concentration and cycle time on the reactor performance was studied. It was attempted to analyse the observations using a simplified pseudo-homogeneous cell model. Since the model was found to be capable of describing the reactor behaviour over a wide parameter range, it was applied to perform extensive parametric calculations. Besides the achievable conversion other objective functions such as recoveries and production rates were also analysed. From the results obtained a few generally applicable rules to evaluate the potential of discontinuously operated chromatographic reactors could be derived.
Keywords:reaction engineering;chromatographic reactor;kinetics;adsorption;ion exchange resins;methyl formate