화학공학소재연구정보센터
Polymer(Korea), Vol.26, No.5, 653-660, September, 2002
Poly(ethylene glycol) diacrylate로 가교된 Poly(N-isopropylacrylamide) Hydrogel의 부피 상전이 특성
Volume Phase Transition of Poly(N-isopropylacrylamide-co-sodium methacrylate) Hydrogel Crosslinked with Poly(ethylene glycol) diacrylate
E-mail:
초록
가교제 poly(ethylene glycol) diacrylate (PEGDA)를 사용하여 제조한 poly(N-iso-propylacrylamide) (PNIPAAm) 및 poly(N-isopropylacrylamide-co-sodium methacrylate) (P(NIPAAm-co-SMA)) hydrogels의 부피 상전이 현상을 함수율과 표면적의 변화로 고찰하였다. Hydrogel의 부피 상전이 온도는 가교제의 농도에는 영향을 받지 않았으나 공단량체인 SMA의 소량 첨가로 40 ℃ 이상 상승하였다. 특히 PEGDA를 가교제로 사용하였을 경우 가교 길이가 길어짐에 따라 부피 상전이 온도가 더 높게 상승하였다. PNIPAAm 및 P(NIPAAm-co-SMA) hydrogels의 표면적 역시 부피 상전이 온도를 전후하여 감소하였는데 이는 부피 상전이 과정에서 기공의 크기가 현저하게 감소하였기 때문이다. 따라서 표면적과 기공 크기의 변화가 부피 상전이를 나타내는 중요한 인자임을 알 수 있다.
The volume phase transition of poly(N-isopropylacrylamide) (PNIPAAm) and poly(N-isopropylacrylamide-co-sodium methacrylate) (P(NIPAAm-co-SMA)) hydrogels crosslinked with poly(ethylene glycol) diacrylate (PEGDA) was investigated in consideration of water content and surface area. The volume phase transition temperature of hydrogel was not affected by the concentration of crosslinking agent, which increased over 40 ℃ by incorporating a small amount of SMA. Higher volume phase transition temperature was obtained when PEGDA was used as a crosslinking agent, suggesting that the chain length of crosslinking agent had a significant effect on the volume phase transition temperature. The surface area of PNIPAAm and P(NIPAAm-co-SMA) gels fell off around the volume phase transition temperature, resulting from the fact that the size of pores reduced remarkably in the course of the volume phase transition. Hence, the surface area and the pore size were considered to be important factors indicating the volume phase transition.
  1. Hirokawa Y, Tanaka T, J. Chem. Phys., 81, 6379 (1984) 
  2. Otaka K, Inomata H, Konno M, Macromolecules, 23, 283 (1990) 
  3. Inomata H, Saiito GS, Macromolecules, 23, 4887 (1990) 
  4. Bokias G, Hourdet D, Iliopoulos I, Staikos G, Audebert R, Macromolecules, 30(26), 8293 (1997) 
  5. Hoffman AS, J. Control. Release, 6, 297 (1987) 
  6. Feil H, Bae YH, Feijen J, Kim SW, J. Membr. Sci., 64, 283 (1987) 
  7. Rakeuchi S, Omodaka I, Makromol. Chem., 194, 1191 (1993)
  8. Kim K, Shin YJ, Polym.(Korea), 18(5), 860 (1994)
  9. Kim KH, Shin YJ, Polym.(Korea), 18(3), 412 (1994)
  10. Okano T, Yanada N, Sakai H, Sakurai Y, J. Biomed. Mater. Res., 27, 1243 (1993) 
  11. Takei YG, Aoki T, Sanui K, Ogata N, Sakurai Y, Okano T, Biomaterials, 16, 667 (1995) 
  12. Kikichi A, Okuhara M, Karihusa F, Sakurai Y, Okano T, J. Biomater. Sci.-Polym. Ed., 9, 1331 (1998)
  13. Vernon BL, Kim SW, Bae YH, J. Biomater. Sci.-Polym. Ed., 10, 183 (1999)
  14. Feil H, Bae YH, Feijen J, Kim SW, Macromolecules, 25, 5528 (1992) 
  15. Feil H, Bae YH, Feijen J, Kim SW, Macromolecules, 26, 2496 (1993) 
  16. Okuyama Y, Yoshida R, Sakai K, Okano T, Sakurai Y, J. Biomater. Sci.-Polym. Ed., 4, 545 (1993)
  17. Chen G, Hoffman AS, Macromol. Chem. Phys., 196, 1251 (1995) 
  18. Brazel CS, Peppas NA, Macromolecules, 28(24), 8016 (1995) 
  19. Okano T, Bae YH, Jacobs H, Kim SW, J. Control. Release, 11, 255 (1990) 
  20. Kokufuta E, Zhnag Y, Tanaka T, Mamada S, Macromolecules, 26, 1053 (1993) 
  21. Liu Y, Velada JL, Huglin MB, Polymer, 40(15), 4299 (1999) 
  22. Chen GH, Hoffman AS, Nature, 373(6509), 49 (1995) 
  23. Cho HK, Kim BS, Noh ST, Polym.(Korea), 25(2), 186 (2001)
  24. Yoshida R, Kaneko Y, Sakai K, Okano T, Sakurai Y, Bae YH, Kim SW, J. Control. Release, 32, 97 (1994) 
  25. Bae YH, Okano T, Kim SW, J. Polym. Sci. B: Polym. Phys., 28, 923 (1990) 
  26. Gregg SJ, Sing KSW, "Adsorption Surface Area and Porisity," Academic Press, New York (1992)