Applied Microbiology and Biotechnology, Vol.59, No.2-3, 217-223, 2002
Bioengineered emulsans from Acinetobacter calcoaceticus RAG-1 transposon mutants
Transposon mutants of Acinetobacter calcoaceticus strain RAG-I were studied in an effort to control fatty acid (FA) substitution patterns of emulsan, a bioemulsifier secreted by the organism. The disrupted genes, involved in the biosynthetic pathways of biotin, histidine, cysteine or purines, influenced the level and types of FAs incorporated into emulsan. The structural variants of emulsan generated by the transposon mutants were characterized for yield, FA content, molecular weight, and emulsification behavior when grown on a series of FAs of different chain lengths from C11 to C18. Yields of emulsan from the transposon mutants were found to be lower than the parent strain and depended on the type of FA used to supplement the growth medium. Mutants 13D (His-) and 52D (Cys-) grown on LB plus C16 or C14, respectively, exhibited enhanced emulsifying activity compared to A. calcoaceticus RAG-1. The presence and composition of long chain FAs on the polysaccharide backbone influenced emulsification behavior: particularly a high mole percentage of C16 (48%) and C18 (42%). The results provide important insight into the bioengineering of bioemulsifier-producing microorganisms and provide a path towards highly tailored novel amphipathic structures to utilize as biodegradable in environmental, biomedical, and personal care applications.