Biotechnology Progress, Vol.18, No.4, 694-699, 2002
Improving 1,3-propanediol production from glycerol in a metabolically engineered Escherichia coli by reducing accumulation of sn-glycerol-3-phosphate
High levels of glycerol significantly inhibit cell growth and 1,3-propanediol (1,3-PD) production in anaerobic glycerol fermentation by genetically engineered Escherichia coli (E. coli) strains expressing genes from the Klebsiella pneumoniae dha (K pneumoniae) regulon. We have previously demonstrated that 1,3-PD production by the engineered E. coli can be improved by reducing the accumulation of methylglyoxal. This study focuses on investigation of another lesser-known metabolite in the pathways related to 1,3-PD production-glycerol-3-phosphate (G3P). When grown anaerobically on glycerol in the absence of an exogenous acceptor, the engineered E. coli strains have intracellular G3P levels that are significantly higher than those in K pneumoniae, a natural 1,3-PD producer. Furthermore, in the engineered E. coli strains, the G3P levels increase with increasing glycerol concentrations, whereas, in K. pneumoniae, the concentrations of G3P remain relatively constant. Addition of fumarate, which can stimulate activity of anaerobic G3P dehydrogenase, into the fermentation medium led to a greater than 30-fold increase in the specific activity of anaerobic G3P dehydrogenase and a significant decrease in concentrations of intracellular G3P and resulted in better cell growth and an improved production of 1,3-PD. This indicates that the low activity of G3P dehydrogenase in the absence of an exogenous electron acceptor is one of the reasons for G3P accumulation. In addition, spent media from E. coli Lin61, a glycerol kinase (responsible for conversion of glycerol to GO) mutant, contains greatly decreased concentrations of G3P and shows improved production of 1,3-PD (by 2.5-fold), when compared to media from its parent strain E. coli K10. This further suggests that G3P accumulation is one of the reasons for the inhibition of 1,3-PD production during anaerobic fermentation.