화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.13, No.6, 524-530, October, 2002
UV/TiO2 광촉매 공정을 이용한 BTX의 분해 특성
Decomposition of BTX Using UV/TiO2 Photocatalytic Process
E-mail:
초록
BTX는 실내 공기 오염의 직접적인 원인이며, 이 중 25%는 발암성 물질로 알려져 있을 뿐만 아니라 현대식 건물 증후군(SBS)의 원인으로 작용한다. 본 연구에서는 새로운 환경 친화적인 처리기술로 대두되고 있는 UV/TiO2 광촉매 공정을 이용하여 BTX를 분해하고자 하였다. BTX의 유입농도를 각각 50, 100, 200 ppmv로 실험하였으며, 수분의 양을 0, 500, 1000 mg/m(3)으로 변화시켜 광분해 특성을 알아보았다. BTX의 유입농도 감소에 따라, 수분 양의 증가에 따른 전환율이 증가하였으며, 1000 mg/m(3) H2O, 50 ppmv의 조건에서 benzene이 가장 높은 전환율을 나타내었다. BTX의 반응성은 benzene>toluene>m-xylene의 순으로 감소되었다. 또한 체류시간의 증가에 따라 전환율이 증가하였으며, 촉매의 양에 따른 광분해 특성을 상관한 결과 한계 촉매량이 존재하였다. 공정에서는 어떠한 중간 생성물도 확인되지 않았다. 따라서 유입된 반응물은 모두 이산화탄소와 물로 전환된 것으로 판단된다.
Not only BTX (benzene, toluene, and m-xylene) have a direct influence on indoor air pollution, most of BTX are now known to be carcinogenic substances that also cause sickness-building syndrome (SBS). This study investigated the photocatalysis of BTX using UV/TiO2, which is recognized as an environmentally benign process. For the experiment, the inlet concentrations of BTX used were 50, 100 and 200 ppmv, and amounts of H2O added were 0, 500 and 1000 mg/m(3). The conversion of BTX increased as the inlet concentration was decreased and as the amount of H2O was increased. The highest conversion of benzene was obtained at 1000 mg/m(3) of H2O and 50 ppmv of the inlet concentration. The reactivity of reactants decreased in the following order: benzene>toluene>m-xylene. The photocatalytic conversion was increased as the residence time increased; this is because the contact time between reactants and catalyst had increased. In this process, there were no formation of intermediates and this was verified by GC/MSD and HPLC analyses. The results showed that the reactants were completely converted to H2O and CO2.
  1. Son JY, Yoon DW, SAREK, 24(1), 44 (1995)
  2. Knox RS, Theory of Excitons, Solid State Phys. Suppl., Academic Press, New York, 5, 1 (1963)
  3. Somorjai GA, Chemistry in Two Dimensions; Surfaces, Cornell University Press, Ithaca, U.S.A., 551 (1981)
  4. Formenti M, Julliet F, Meriaudeau P, Teichner SJ, Faraday Discuss. Chem. Soc., 58, 185 (1974) 
  5. Lee SB, Chung KW, Hong IK, Kim HJ, J. Ind. Eng. Chem., 7(4), 193 (2001)
  6. Mendez-Roman R, Cardona-Martinez N, Catal. Today, 40(4), 353 (1998) 
  7. Larson SA, Falconer JL, Appl. Catal. B: Environ., 4(4), 325 (1994) 
  8. Fu XZ, Zeltner WA, Anderson MA, Appl. Catal. B: Environ., 6(3), 209 (1995) 
  9. Maira AJ, Yeung KL, Soria J, Coronado JM, Belver C, Lee CY, Appl. Catal. B: Environ., 29(4), 327 (2001)