Journal of the Korean Industrial and Engineering Chemistry, Vol.13, No.6, 551-557, October, 2002
AOT 계면활성제 시스템의 마이크로에멀젼을 이용한 AgCl 나노입자 제조
Preparation of Silver Chloride Nanoparticles Using AOT-Based Microemulsion
E-mail:
초록
본 연구에서는 silver nitrate와 sodium chloride의 무기염이 각각 분산되어 있는 두 종류의 water-in-oil(W/O) 마이크로에멀젼을 이용하여 silver chloride(AgCl) 나노입자를 제조하였다. 이를 위하여 AOT 계면활성제, 오일, 무기염 수용액으로 이루어진 삼성분 시스템에 대하여 단일상의 마이크로에멀젼이 존재하는 영역을 설정하기 위한 상평형 실험을 수행한 결과, 사용한 오일의 사슬 길이가 증가함에 따라 계면활성제 시스템의 친수성이 증가하여 단일상으로 존재하는 W/O 마이크로에멀젼 영역은 증가함을 알 수 있었다. 상평형 실험결과에 의하여 결정된 W/O 마이크로에멀젼을 이용하여 AgCl 나노입자를 제조하였으며, TEM 측정을 통하여 모든 시스템에서 10 nm 전후의 구형에 가까운 균일한 입자가 제조됨을 확인하였다. 또한 연속상으로 사용한 오일의 사슬 길이가 증가할수록 intermicellar exchange rate가 빨라져서 생성되는 입자의 크기는 작아지고 반면에 개수는 증가하였으며, 동일한 시스템에서 수용액의 조성을 증가시킴에 따라 생성된 AgCl 나노입자의 크기는 증가함을 알 수 있었다.
Silver chloride(AgCl) nanoprticles were prepared using two different types of water-in-oil(W/O) microemulsion containing silver nitrate and sodium chloride, respectively. Phase behavior experiments for ternary systems containing AOT surfactant, hydrocarbon and aqueous solution of an inorganic salt showed that the chain length of a hydrocarbon caused a remarkable difference in phase region of one phase W/O microemulsion, especially water contents contained in W/O microemulsion. Generally, microemulsion region was found to be broadened with an increase in the alkyl chain length of a hydrocarbon mainly due to an increase in hydrophilic nature of a surfactant. With the information of phase behavior experiments, AgCl nanoparticles were prepared using different AOT-based microemulsion systems and photomicrographs obtained by transmission electron microscopy indicated that the average particle size, size distribution and number of particles formed were dependent on the initial composition of one phase W/O microemulsion, which obviously affected intermicellar exchange rate. It has been found that an increase in alkyl chain length of a hydrocarbon results in a decrease in particle size because of higher intermicellar exchange rate.
- Shin SI, Oh SG, Korean Soc. Ind. Eng. Chem., 4(2), 40 (2001)
- Taleb A, Petit C, Pilem MP, Chem. Mater., 9, 950 (1997)
- Petit C, Lixon P, Pileni MP, J. Phys. Chem., 97, 12974 (1993)
-
Tanaka R, Shiromizu T, Langmuir, 17(26), 7995 (2001)
-
Lee MH, Oh SG, Yi SC, J. Colloid Interface Sci., 226(1), 65 (2000)
-
Li YC, Park CW, Langmuir, 15(4), 952 (1999)
-
Nagarajan R, Ruckenstein E, Langmuir, 16(16), 6400 (2000)
-
Nazario LMM, Crespo JPSG, Holzwarth JF, Hatton TA, Langmuir, 16(14), 5892 (2000)
-
Tojo C, Blanco MC, Lopezquintela MA, Langmuir, 13(17), 4527 (1997)
-
Santra S, Tapec R, Theodoropoulou N, Dobson J, Hebard A, Tan WH, Langmuir, 17(10), 2900 (2001)
- Sugimoto T, Shiba F, Colloids Surf. A: Physicochem. Eng. Asp., 164, 205 (2000)
- Andreeva AI, Krasovskii AN, Novikov DV, Russian J. Appl. Chem., 72, 167 (1999)
-
Sager WFC, Langmuir, 14(22), 6385 (1998)
-
Li XF, Ueda K, Kunieda H, Langmuir, 15(23), 7973 (1999)
- Monnoyer P, Fonceca A, Nagy JB, Colloids Surf. A: Physicochem. Eng. Asp., 100, 233 (1995)
-
Kim DW, Oh SG, Lee JD, Langmuir, 15(5), 1599 (1999)
-
Chang CL, Fogler HS, Langmuir, 13(13), 3295 (1997)
-
Caillet C, Hebrant M, Tondre C, Langmuir, 14(16), 4378 (1998)
-
Tojo C, Blanco MC, Lopez-Quintela MA, Langmuir, 14(24), 6835 (1998)
-
Bagwe RP, Khilar KC, Langmuir, 13(24), 6432 (1997)
-
Bagwe RP, Khilar KC, Langmuir, 16(3), 905 (2000)
- Eicke HF, "Interfacial Phenomena in Apolar Media," eds. H.F. Eicke and G.D. Parfitt, 153, Marcel Dekker, New York (1987)