화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.13, No.8, 825-831, December, 2002
Poly(hexamethylene carbonate) glycol/Poly(oxytetramethylene) glycol 혼합 폴리올을 도입한 수분산성 폴리우레탄의 제조와 물성
Synthesis and Properties of Aqueous Polyurethane Dispersion Based on Mixed Polyols: Poly(hexamethylene carbonate) glycol/Poly(oxytetramethylene) glycol
E-mail:
초록
Poly[hexamethylene carbonate] glycol (PHMCG)과 poly[oxytetramethylene] glycol (PTMG)을 각각 카보네이트 폴리올 및 에테르 타입의 폴리올로 사용하고 여기에 잠재적 음이온기인 dimethylol propionic acid (DMPA)와 이소시아네이트 화합물인 isophorone diisocyanate (IPDI)를 첨가하여 음이온성 폴리우레탄 분산체 (PUD)를 제조하였다. 두가지 형태의 폴리올을 각각 단독으로 사용할 때와 혼합하여 사용할 때 폴리올의 조성 및 종류가 PUD의 유화 입경과 건조 필름의 기계적, 열적 물성에 미치는 영향 등에 대해 검토하였는데 혼합 폴리올 적용시 PTMG 함량이 증가할수록 PUD의 유화 입경이 점차적으로 증가하는 경향을 보였고, 인장 강도는 완만한 감소를 나타내다가 증가하였다. 이는 두 폴리올간의 상용성이 적기 때문에 나타나는 결과로 해석되며, 이러한 비상용성은 DSC 분석을 통하여 확인할 수 있었다.
Using poly[hexamethylene carbonate] glycol (PHMCG) and poly[oxytetramethylene] glycol (PTMG) as the carbonate type and ether type polyols, respectively, and by adding isophorone diisocyanate (IPDI) and dimethylol propionic acid (DMPA), polyurethane dispersions (PUD) were prepared. The effect of type and composition of polyols on the particle size of PUD and on the mechanical and thermal properties of PUD cast films were investigated. As the PTMG contents in the mixed polyols increased the particle size asymptotically increased, while tensile strength showed a slight decrease followed by a slight increase. This was due to the incompatibility of two polyols, which was confirmed by DSC analysis.
  1. Oertel G, Polyurethane Handbook, 2nd Ed., Carl Hanser Verlag, Munich Vienna New York (1994)
  2. Doyle EN, The Development and Use of Polyurethane Products, McGraw-Hill Book Company, New York (1984)
  3. Woods G, The ICI Polyurethane Book (1987)
  4. Hepburn C, Polyurethane Elastomers, 2nd ed., Elsevier Science Publishing Co., New York (1992)
  5. Frisch KC, Klemper D, Comprehensive Polymer Science, eds. by G. Allen and J.C. Bevington, Vol. 5, Chap. 24, Pergamon Press, New York (1989)
  6. Dieterich D, Prog. Org. Coat., 9, 281 (1981) 
  7. Ahn TO, Jung SU, Jeong HM, Lee SW, J. Appl. Polym. Sci., 51(1), 43 (1994) 
  8. Ahn JB, Cho HK, Jeong CN, Noh ST, J. Korean Ind. Eng. Chem., 8(2), 230 (1997)
  9. Krieger IM, Polymer Colloid eds. by R. Buscall, T. Corner, and I.F. Stageman, Elsevier, New York (1985)
  10. Kim TK, Kim SJ, Kim BK, Polym.(Korea), 16(5), 604 (1992)
  11. Kim BK, Lee YM, J. Macromol. Sci.-Pure Appl. Chem., A29(12), 1207 (1992)
  12. Vervey EJW, Overbeek JTG, Theory of Stability of Lyophobic Colloids, Elsevier, Amsterdam (1952)
  13. Dieterich D, Webele W, Witt H, Angew. Chem.-Int. Edit., 9 (1970)
  14. Santerre JP, Brash JL, J. Appl. Polym. Sci., 52(4), 515 (1994) 
  15. Wang CB, Cooper SL, Macromolecules, 16, 775 (1983) 
  16. McLennaghan AW, Petherich RA, Eur. Polym. J., 24, 1063 (1988) 
  17. Xiao H, Xiao HX, Frisch KC, Malwitz N, J. Appl. Polym. Sci., 54(11), 1643 (1994) 
  18. Hwang KKS, Yang CZ, Cooper SL, Polym. Eng. Sci., 21, 1027 (1981) 
  19. Jeong CN, Cho HK, Noh ST, J. Korean Ind. Eng. Chem., 8(4), 575 (1997)