Journal of Chemical Physics, Vol.117, No.14, 6794-6802, 2002
Green emission from poly(fluorene)s: The role of oxidation
Poly(fluorene)-type materials are widely used in polymer-based light emitting devices. In their pristine state, they emit in the deep blue spectral region. During operation there appears, however, an additional emission peak at around 2.3 eV. This observation has usually been attributed to aggregate or excimer formation. Recently, it has been shown that photo- and/or electro-oxidation of poly(fluorene) chains resulting in ketonic defects (i.e., formation of fluorenone groups) can also be held responsible for emission in that spectral region. In this contribution, we apply quantum-chemical techniques to gain a detailed understanding of the optical properties of poly(fluorene)s containing ketonic defects. In particular, we compare model systems for poly(fluorene) with their ketone-containing counterparts, focusing on the influence of excited-state localization effects. The results of the theoretical calculations are confirmed by experimental investigations on statistical copolymers of fluorene and 9-fluorenone.