화학공학소재연구정보센터
HWAHAK KONGHAK, Vol.34, No.1, 17-22, February, 1996
고분자의 혐기적 생분해도에 영향을 미치는 하수 소화 슬러지의 인자들
Factors of Municipal Anaerobic Digested Sludge Affecting the Biodegradation of Plastics under Anaerobic Condition
초록
혐기적 조건에서 플라스틱의 생분해도를 측정할 때 미생물원으로 사용되는 소화조 슬러지의 특성 중 플라스틱의 생분해도에 미치는 영향 인자에 대하여 조사하였다. 1994년 5월부터 7개월간 채취한 중랑 하수처리장(서울) 소화 슬러지의 유기물 함량(total organic solids)은 0.52-0.86%로 변하였다. 슬러지의 cellophane에 대한 생분해도는 슬러지의 유기물 함량과 일치하지 않았으며 여름철(7,9월)에 채취한 슬러지의 생분해 활설이 특히 낮았다. 그러나 poly-β-hydroxybuty-rate/hydroxyvalerate 공중합체(PHB/HV, 92/8, W/W)의 생분해도는 슬러지의 유기물 함량과 일치하였다. 슬러지의 접종량이 증가할수록 cellophane과 PHB/HV의 생분해 속도는 증가하였고 분해 지체기는 감소하였다. 슬러지 접종의 최적 농도는 배지 중의 총 유기성 고체의 농도 0.10-0.20%(w/v)이였다.
The characteristics of anaerobic digested sludge affecting the biodegradation of plastic materials under anaerobic condition were studied. The percent organic matter(total solid×volatile solid, VSS) of sludges obtained from Joongrang Municipal Wastewater Treatment Plant in Seoul had varied from 0.52% to 0.86% during the period of 7 months from May, 1994. The biodegradation activity of sludges for cellophane didn’t correspond to the VSS. Sludges of July and September showed lower activities than others. But biodegradation activity for poly-β-hydroxybuty-rate/hydroxyvalerate copolymer(PHB/HV, 92/8, W/W) corresponded well to VSS value. The biodegradation rate for both cellophane and PHB/HV increased as the concentration of sludge inoculum increases along with the decrease of lag period. The optimal total organic solids in the test medium was determined as 0.10-0.20%(W/V).
  1. 폐기물 관리, 환경부 폐기물 관리국 (1992)
  2. Colin G, Cooney JD, Carlsson DJ, Wiles DM, J. Appl. Polym. Sci., 26, 509 (1981) 
  3. Goheen SM, Wool RP, J. Appl. Polym. Sci., 42, 2691 (1991) 
  4. Yakabe Y, Nohara K, Hara T, Fujino Y, Chemosphere, 25, 1879 (1992) 
  5. ASTM D5209-92, "Standard Test Method for Determining the Aerobic Biodegradation of Plastic Materials in the Presence of Municipal Sewage Sludge," Annual Book of ASTM Standards, Vol. 08.03, American Society for Testing and Materials, Philadelhia, U.S.A. (1992)
  6. ASTM D5271-92, "Standard Test Method for Assessing the Aerobic Biodegradation of Plastic Materials in a Activated Sludge-Wastewater-Treatment System," Annual Book of ASTM Standards, Vol. 08.03, American Society for Testing and Materials, Philadelphia, U.S.A. (1992)
  7. ASTM D5338-92, "Standard Test Method for Determining the Aerobic Biodegradation of Plastic Meterials under Controlled Composting Conditions," Annual Book of ASTM Standards, Vol. 08.03, American Society for Testing and Materials, Philadelphia, U.S.A. (1992)
  8. Gilmore DF, Antoun S, Lenz RW, Goodwin S, Austin R, Fuller RC, J. Ind. Microbiol., 10, 199 (1992) 
  9. McCarthy SP, Gada M, Smith GP, Tolland V, Press B, Eberiel D, Bruell C, Gross RA, ANTEC '92 816-818 (1992)
  10. Johnson KE, Pometto AL, Nikolov Z, Appl. Environ. Microbiol., 59, 1155 (1993)
  11. Fields RD, Rodriguez F, Finn RK, J. Appl. Polym. Sci., 18, 3571 (1974) 
  12. Lee BT, Pometto AL, Fratzke A, Appl. Environ. Microbiol., 57, 678 (1991)
  13. Cacciari I, Quatrini P, Zirletta G, Mincione E, Vinciguerra V, Lupattelli P, Appl. Environ. Microbiol., 59, 3695 (1993)
  14. 김연철, 석사논문, 한국과학기술원, 대전 (1993)
  15. ASTM D5210-91, "Standard Test Method for Determining the Anaerobic Biodegradation of Plastic Materials in the Presence of Municipal Sewage Sludge," Annual Book of ASTM Standards, Vol. 08.03, American Society for Testing and Materials, Philadelphia, U.S.A. (1991)
  16. Breslin VT, J. Environ. Polym. Degrad., 1, 127 (1993) 
  17. Nyns EJ, "Biomethanation Processes," in W. Schonborn (ed.) Biotechnology: A Comprehensive Treatise in 8 Volumes, VCH Publishers, Suite 909, New York, U.S.A. (1986)
  18. Owen WF, Stuckey DC, Healy JB, Young LY, McCarty PL, Water Res., 13, 485 (1979) 
  19. Shelton DR, Tiedje JM, Appl. Environ. Microbiol., 47, 850 (1984)