화학공학소재연구정보센터
Journal of Colloid and Interface Science, Vol.249, No.2, 412-422, 2002
Rheological characterization, crystallization, and gelation behavior of monoglyceride gels
Saturated monoglycerides can form firm gels in water. These gels are networks of stiff plate-like beta-crystals of monoglycerides (a "cardhouse"), grown from a space-filling lamellar liquid-crystalline phase. The molecular mechanism of crystallization is discussed in the light of network formation. The concentration dependence of gel development of (shear-cooled) monoglyceride gels has been studied by theology. A gelation mechanism has been proposed, consisting of two steps: (i) After formation of a nucleus, rapid crystallization in a lateral direction occurs (probably within one bilayer) by which the first space-filling network is formed. (ii) This is followed by reinforcement of the network by which stacks of crystalline bilayers are formed. The plate-like crystals are linked in connective domains or junction zones, probably containing all the material (cosurfactants, diglycerides, etc.) that does not fit in the crystalline array. Small deformation theology shows that above about 2 wt% monoglyceride a percolating network is formed. The large deformation rheology is typical for a particle gel with a relatively small strain at failure (both in shear deformation and compression). The connective domains or junction zones already fail when relatively small deformations are put on the system.