Journal of Polymer Science Part B: Polymer Physics, Vol.40, No.17, 1857-1868, 2002
Monte Carlo simulation of diepoxides and monoepoxides cured with amines
The diepoxide-monoepoxide-diamine curing systems are investigated with a Monte Carlo simulation. The dependence of the molecular weight distribution (MWD), gel fraction, and cycle rank of the polymers on the differences in the epoxy reactivities and the contents of the monoepoxide as a reactive diluent are discussed. Before gelation, the MWD of the curing systems with a lower content of the monoepoxide is broader than the MWD of the curing systems with a higher content, and it leads to a lower critical conversion. The gel fraction and cycle rank of the polymers decrease with an increasing amount of the diluent. Even fully cured, the system with a 0.6 epoxy molar fraction of the monoepoxide still has a large fraction of sol, about 49%. Although the various reactivities of the monoepoxide result in different ways of forming gels during curing, the final gel fractions are always near 100% as long as the epoxy molar fraction of the diluent is no more than 0.2. The profiles of the molecular weights of the polymers calculated by the model are in agreement with the experimental data.
Keywords:epoxide;kinetics (polym.);curing of polymers;Monte Carlo simulation;molecular weight distribution/molar mass distribution