Langmuir, Vol.18, No.21, 7943-7952, 2002
Distinct surface morphologies of electropolymerized polymethylsiloxane network polypyrrole and comonomer films
The electropolymerization of polysiloxane-functionalized pyrrole or poly(methyl-(undec-pyrrole-1-yl-decyl)-siloxane), to form conjugated network polymer films, is described. The "precursor polypyrrole" was electropolymerized using dynamic cyclic voltammetry (CV) on a flat conducting substrate electrode, resulting in cross-linked polypyrrole films. Unique "nanoscale" morphologies were formed because of phase-segregation of polysiloxane domains and cross-linked polypyrrole, depending on the thickness and electrochemical conditions. By electropolymerizing the precursor polymer in-situ with pyrrole comonomers, the morphology changes with composition ratio. The film properties were investigated by cyclic voltammetry (CV), FT-IR, UV-vis, atomic force microscopy (AFM), surface plasmon spectroscopy (SPS), and X-ray photoelectron spectroscopy (XPS). The precursor method extends the possibility of tailoring film properties of polypyrrole and other conjugated polymers. Interesting insights on the electrochemical properties of cross-linked electrodeposited conjugated polymer films are discussed.