화학공학소재연구정보센터
Solid State Ionics, Vol.148, No.3-4, 493-498, 2002
Conducting polymers as electrode materials in supercapacitors
This paper summarizes the performance data of conventional and especially designed thiophene-based conducting polymers for use as positive and negative electrodes in n/p type supercapacitors. Performance data of polymer composite electrodes are also compared with those of high surface area carbon-based composite electrodes. On the basis of capacity, capacitance and electrode charging resistance data, we selected the best electrode materials, and assembled and tested galvanostatic charge-discharge cycles n/p type pMeT-based supercapacitors and hybrid supercapacitors with pMeT as positive electrode active material and activated carbon as negative. The results of this investigation demonstrate that a conventional polymer such as pMeT can be successfully used in the supercapacitor technology when a hybrid configuration is realized; its use is, indeed, a great advantage because the hybrid supercapacitor outperforms the double-layer carbon supercapacitors presently on the market in terms of specific energy and power.