화학공학소재연구정보센터
HWAHAK KONGHAK, Vol.34, No.4, 424-428, August, 1996
여러 가지 산촉매상에서 CFC-113의 산화분해
Oxidative Decomposition of CFC-113 on Various Acidic Catalysts
초록
CFC-113의 산화분해 반응을 다양한 금속산화물 촉매상에서 대기압, 500℃, 0.5% CFC-113의 몰비로 관형 흐름반응기에서 수행하였다. 알루미나, 제올라이트, 티타니아-실리카 등과 같은 산촉매들은 높은 분해활성을 나타내었지만, Fe2O3, ZnO, TiO2, SiO2, CaO 등은 활성이 낮았다. TiO2- SiO2(Ti/Si=50/50)촉매는 조사된 산촉매들 중에서 가장 좋은 활성유지도와 CO2로의 높은 선택도를 보였다. 그러나, 이 촉매에서도 Si성분이 반응생성물인 무기할로겐과 반응하는데 기인하여 비활성화가 일어났다. 이러한 무기할로겐에 대한 내구성을 높이기 위해서 황산으로 변형시킨 고체 초강산촉매(TiO2-SiO2/SO42- : Ti/Si=50/50)를 제조하였다. DSC로 산점의 분포를 측정하여 반응활성종이 강산점임을 입증하였다. 이러한 초강산촉매는 시험된 모든 촉매들 중에서 가장 높은 활성과 내구성을 보였다.
The catalytic oxidative decomposition of CFC-113 was carried out on various metal oxides at atmospheric pressure, 500℃, and CFC-113 feed mole percent of 0.5 using a tubular flow reactor. Acid catalysts such as aluminas, zeolites, and titania-silica exhibited high decomposition activities, whereas the activities of Fe2O3, ZnO, TiO2, SiO2, and CaO were low. TiO2-SiO2 catalyst showed the best performance regarding retention of activity and high selectivity to CO2 among the acid catalysts investigated. However, it was found that deac- tivation of catalyst occurred because Si in TiO2-SiO2(Ti/Si=50/50) reacted with inorganic ha- logens(fluorine and chlorine)which were reaction products. Solid superacid catalyst(TiO2-SiO2/ SO42-:Ti/Si=50/50) modified with H2SO2 was prepared for high durability against inorganic ha- logens. The acid sites distribution of the catalyst was measured by DSC. The result sugge- sted that strong acid sites were active sites. This superacid catalyst showed the highest ac- tivity and durabitity among the catalysts examined.
  1. Molina MJ, Rowland FS, Nature, 249, 810 (1974) 
  2. Oku A, Kimura K, Sato M, Ind. Eng. Chem. Res., 28, 1055 (1989) 
  3. Witt SD, Wu EC, Loh KL, Tang YN, J. Catal., 71, 270 (1981) 
  4. Ministre of International Trade and Industry of Japanese Government, "Destruction Technologies of CFC's (Interim Report)," (1989)
  5. Kondo S, Kazuaki K, 化學工業, June, 48 (1991)
  6. Imamura S, Catal. Soc. Jpn., 34(7), 464 (1992)
  7. Sugeta T, 化學工業, June, 54 (1991)
  8. Ahn BS, Lee SC, Park KY, Chem. Ind. Technol., 12(3), 255 (1994)
  9. Kim DW, Ihm SK, Park KY, Lee BG, HWAHAK KONGHAK, 31(6), 831 (1993)
  10. Coq B, Cognion JM, Figueras F, Tournigant D, J. Catal., 141, 21 (1993) 
  11. Ohnishi R, Catal. Soc. Jpn., 34(7), 470 (1992)
  12. Ueda W, Tomioka S, Morikawa Y, Chem. Lett., 879 (1990) 
  13. Takita Y, Yamada H, Hashida M, Chem. Lett., 715 (1990) 
  14. Aida T, Higuchi R, Niyama H, Chem. Lett., 2247 (1990) 
  15. Aida T, higuchi R, Niyama H, 화학공학논문집, 17(5), 943 (1991)
  16. Imamura S, Shiomi T, ishida S, Utani K, Ind. Eng. Chem., 29, 1758 (1990) 
  17. Imamura S, Imakubo K, Furuyoshi S, Jindai H, Ind. Eng. Chem. Res., 30, 2355 (1991) 
  18. Imamura S, Catal. Today, 11, 547 (1992) 
  19. Karmaker S, Greene HL, J. Catal., 138, 365 (1992)
  20. Sohn JR, Jang HJ, J. Catal., 132, 563 (1991) 
  21. Aboul-Gheit AK, Summan AM, "Hydrotreating Catalysts," (Occelli, M.L. and Anthony, R.G., ed.), Elsevier, Amsterdam, pp. 181-186 (1989)
  22. Imamura S, Tarumoto H, Ishida S, Ind. Eng. Chem. Res., 28, 1449 (1989) 
  23. Mizuno K, Fujii Y, Tajima M, Kinuma R, Aizawa Kushiyama S, Kobayashi S, Ohuchi H, Proc. Fukuoka Int. Symp. '90, Fukuoka (1990)
  24. Nagata H, Takakura T, Tashiro S, Kishida M, Mizuno K, Tamori I, Wakabayashi K, Appl. Catal. B: Environ., 5(1-2), 23 (1994) 
  25. Nakamato K, "Infrared and Raman Spectra of Inorganic and Coordination Compounds," 3rd Ed., p. 241, John Wiley & Sons, New York (1978)
  26. John LG, Douglas LH, Barry D, Environ. Sci. Technol., 20(7), 703 (1986)