Polymer(Korea), Vol.27, No.1, 46-51, January, 2003
삼상 계면대에서 활성 탄소섬유로 된 연료전지 전극의 흡착 특성
Adsorption Properties of Fuel-Cell Electrode Produced from Activated Carbon Fibers in Three Phase Distribution
E-mail:
초록
본 연구에서는 적절한 반응 삼상 계면대를 형성하기 위해서 카본블랙과 활성 탄소섬유를 혼합하여 연료전지의 전극을 제조하고, 전극 삼상 계면대의 변화를 고찰하였다. 활성 탄소섬유의 질량비에 따른 백금의 담지량과 백금 입자크기는 각각 원자흡광분석기와 X-선 회절기를 사용하여 분석하였다. 또한 비표면적(SBET), 미세기공도 및 기공크기분포 (PSD)를 포함하는 전극의 기공구조는 BET를 이용하여 고찰하였으며, 주사전자현미경을 이용하여 전극 삼상 계면대의 형태를 관찰하였다. 실험 결과, 백금의 담지율은 활성 탄소섬유의 첨가에는 큰 영향을 받지 않았다. 반면에, 전극 삼상 계면대는 30% 활성 탄소섬유를 카본블랙에 첨가하였을 경우 더 향상되었는데 이는 촉매의 활성점을 제공하는 미세기공 영역이 증가하였기 때문으로 사료된다.
In this work, the eletrode for fuel cell was fabricated by mixing carbon blacks with activated carbon fibers (ACFs) in order to form the proper three phase distribution, and then the change of electrode in three phase distribution was investigated. Pt loading yield with ACF content and Pt particle size were determined by AAS and XRD measurements respectively. And the pore structures, including specific surface area (SBET), microporosity, and pore size distribution (PSD) for each electrode were systematically investigated by BET volumetric measurement. The morphology of electrode in three phase distribution was determined by SEM. As an experimental result, it was observed that Pt loading yield was not influenced on the content of ACF. While, the electrode in three phase distribution was largely improved in the case of 30% ACF addition on carbon blacks. These results were probably explained by the increase of the portion of micropores, resulting in increasing the active sites of catalyst.
- Mcdougall A, Fuel Cells, John Wiley and Sons, New York (1976)
- Giordano N, Passalacqua E, Recupero V, Vivaldi M, Taylor EJ, Wilemski G, Electrochim. Acta, 35, 1411 (1990)
- Appleby AJ, J. Power Sources, 63, 280 (1996)
- Neergat M, Shukla AK, J. Power Sources, 102(1-2), 317 (2001)
- Watanabe M, Tomigawa M, Motoo S, J. Electroanal. Chem., 195, 81 (1985)
- Acres GJK, Frost JC, Hards GA, Potter RJ, Ralph TR, Thompsett D, Burstein GT, Hutchings GJ, Catal. Today, 38(4), 393 (1997)
- Ghouse M, J. Appl. Electrochem., 28(9), 955 (1998)
- Motoo S, Watanable M, Furuya N, J. Electroanal. Chem., 160, 351 (1989)
- Hojo M, Okuda M, Nakamura M, J. Power Sources, 61, 73 (1996)
- Watanabe M, Makita K, Usami H, Motoo S, J. Electroanal. Chem., 197, 195 (1986)
- Passalacqua E, Antonucci PL, Vivaldi M, Patti A, Antonucci V, Giordano N, Kinoshita K, Electrochim. Acta, 37, 2725 (1992)
- Chu D, Electrochim. Acta, 43(24), 3711 (1998)
- Park SJ, Kim CD, Carbon, 39, 1741 (2001)
- Park SJ, Jung WY, J. Colloid Interface Sci., 243(2), 316 (2001)
- Park SJ, Jang YS, J. Colloid Interface Sci., 249(2), 458 (2002)
- Holze R, Vielsich W, Electrochim. Acta, 29, 607 (1984)
- Jalan V, Taylor EJ, J. Electrochem. Soc., 130, 2299 (1983)
- Chan DS, Wan CC, J. Power Sources, 50, 261 (1994)
- Ghouse M, Al-Boeiz A, Abaoud H, Al-Garni M, Int. J. Hydrog. Energy, 20, 727 (1995)
- Giordano N, Passalacqua E, Pino L, Arico AS, Antonucci V, Vivaldi M, Kinoshita K, Electrochim. Acta, 36, 1979 (1991)
- Brunauer S, Emmett PH, Teller E, J. Am. Chem. Soc., 60, 309 (1938)
- Barrett EP, Joyner LG, Halenda PH, J. Am. Chem. Soc., 73, 373 (1951)
- Beguin F, Moreau S, Choisnet J, J. Phys. Chem. Solids, 57, 1049 (1996)
- Park SJ, Kim JS, Carbon, 39, 2011 (2001)
- Scherrer P, Gott. Nachr., 2, 98 (1918)
- Erley W, Wagner H, J. Catal., 53, 287 (1978)
- Park BJ, Park SJ, Ryu SK, J. Colloid Interface Sci., 217(1), 142 (1999)
- Gregg SJ, Sing KSW, Adsorption, Surface Area and Porosity, 2nd Ed., Academic Press, London (1982)