화학공학소재연구정보센터
Polymer(Korea), Vol.27, No.1, 61-68, January, 2003
설폰산형 비드와 섬유 혼성체를 이용한 도금수세수 중의 니켈 흡착 특성
Adsorption Properties of Nickel Ion from Plating Rinse Water Using Hybrid Sulfonated Bead and Fibrous Ion Exchanger
E-mail:
초록
본 연구에서는 도금폐수 중 니켈이온의 분리 회수를 위한 혼성 이온교환체의 제조 및 흡착 특성을 확인하였다. 니켈 흡착량은 이온교환체의 혼합비에 큰 영향이 없었으며, 비드상 이온교환수지 양이 증가할수록 증가하였다. 또한 Langmuir와 Freundlich 흡착 등온식이 직선성을 보였으며 이로부터 니켈의 이온교환 친화력이 큰 것을 확인하였다. 또한 충전방식에 따른 압력손실은 다단충전법에서 적층수가 많아질수록 작아졌고, 혼합충전법에서는 비드 이온교환수지의 양이 증가할수록 압력손실은 감소하였다. 한편, 연속식 흡착실험 결과 다단충전방식의 경우 적층수가 증가할수록 초기 파괴 시간은 짧아졌으며, 최종 파괴 시간은 거의 동일한 것으로 나타났다. 반면, 혼합충전방식의 경우 이온교환섬유의 양이 증가할수록 흡착파괴 시간이 짧았으며, 이때 최대 흡착량은 각각 2.51 meq/g과 2.69 meq/g이었다. 한편, 모든 이온교환체의 흡착된 니켈이온의 탈착은 10분 이내에 98% 이상 탈착되었다.
In this study, we have investigated the preparation of mixed bead and fiber type hybrid ion exchanger for recovering nickel ion from plating rinse water. There was little dependence of adsorption capacity for nickel ion on the mixing ratio of resin type and fiber type of ion exchangers. However, it increased with increasing the resin content in the mixed bed. It was shown that the data Langmuir and Freundlich's adsorption isotherm model were well fitted to the linear. Affinity between the functional groups in the ion exchanger and nickel ion in the process was confirmed. The pressure drop decreased with increasing the number of stage in the multistage bed, but it increased with increasing the resin content in the mixing bed. The initial breakthrough time in the multistage bed was short due to the increase of number of stage in the continuous process. It was found that the final breakthrough time of the multistage bed was little changed. The breakthrough time decreased with increasing the amount of fibrous ion exchanger in the mixed bed. The maximum adsorption capacities of the mixed and multistage beds were 2.51 meq/g and 2.69 meq/g, respectively. The desorption time for the nickel ion with 1N H2SO4 solution was lower than 10 minutes and the yield of desorption was greater than 98 percent.
  1. Yeom HT, Lee JS, Plating and Surface Treatment, Moon-un-dang, Seoul, vol. 1, p. 162 (2000)
  2. Orhan G, Arslan C, Bombach H, Stelter M, Hydrometallurgy, 64, 1 (2002) 
  3. Koivua R, Lehto J, Pajo L, Gale T, Hydrometallurgy, 56, 93 (2002)
  4. Chmielewski AG, Urbaski TS, Migdal W, Hydrometallurgy, 45, 333 (1997) 
  5. Mier MV, Callejas RL, Gehr R, Cisneros BEJ, Alvarez PJJ, Water Res., 35, 373 (2001) 
  6. Gao YM, Sengupta AK, Simpson D, Water Res., 29, 2195 (1996) 
  7. Kakoi T, Horinouchi N, Goto M, Nakashio F, J. Membr. Sci., 118(1), 63 (1996) 
  8. Wong FS, Qin JJ, Wai MN, Lim AL, Adiga M, Sep. Purif. Technol., 29, 41 (2002) 
  9. Yu Q, Matheickal JT, Yin P, Kaewsam P, Water Res., 33, 1534 (1999) 
  10. Cortina JL, Arad-Yellin R, Miralles N, Sastre AM, Warshawsky A, React. Funct. Polym., 38(2), 269 (1998) 
  11. Tenrio JAS, Espinosa DCR, Waste Manage., 21, 637 (2001) 
  12. Soldatov VS, Shunkevich AA, Elinson IS, Johann J, Iraushek H, Desalination, 124(1-3), 181 (1999) 
  13. Kim JG, Kim M, Prospect. Ind. Chem., 4(4), 53 (2001)
  14. Lacour S, Bollinger JC, Serpud B, Chantron P, Arcos R, Anal. Chim. Acta, 428, 121 (2000) 
  15. Kesenci K, Say R, Denizli A, Eur. Polym. J., 38, 1444 (2002)
  16. Misak NZ, React. Funct. Polym., 43(1), 153 (2000) 
  17. Ricker NL, Pittman EF, King CJ, Sep. Pro. Tech., 1, 23 (1980)
  18. Juang RS, Chou TC, Sep. Sci. Technol., 31(10), 1409 (1996)