Combustion and Flame, Vol.131, No.1-2, 16-28, 2002
Effects of equivalence ratio on species and soot concentrations in premixed N-heptane flames
The micro-structure of laminar premixed, atmospheric-pressure, fuel-rich flames of n-heptane/oxygen/argon has been studied at two equivalence ratios (C/O = 0.63 and C/O = 0.67). A heated quartz microprobe coupled to an online gas chromatography/mass spectrometry (HP 5890 Series II/HP 5972) has been used to establish the identities and absolute concentrations of stable major, minor, and trace species by the direct analysis of samples withdrawn from the flames. Benzene was the most abundant aromatic compound identified. The largest PAH detected were the family of C18H10 (molecular weight of 226) that include cyclopenta[cd]pyrene and benzo[ghi]fluoranthene, with peak concentrations reaching 8 ppm and 6 ppm, respectively. Soot particle diameters, number densities, and volume fractions were determined using classical light scattering and extinction measurements. The largest soot particle diameter measured was about 18 nm and the soot volume fraction reached the amount of 4.9 x 10(-7).