- Previous Article
- Next Article
- Table of Contents
Energy, Vol.27, No.12, 1069-1084, 2002
Thermo-neutral production of metals and hydrogen or methanol by the combined reduction of the oxides of zinc or iron with partial oxidation of hydrocarbons
Stoichiometry and temperature requirements are determined for combining the endothermic reduction of metal oxides (ZnO, Fe2O3, and MgO) with the exothermic partial oxidation of hydrocarbons (CH4, n-butane, n-octane, and n-dodecane) in order to co-produce simultaneously metals and syngas in thermoneutral reactions. Thermogravimetric and GC measurements on the combined reduction of ZnO and Fe2O3 with the partial oxidation of CH4 were conducted at 1400 K to experimentally verify the products predicted by equilibrium computations, and resulted in the complete reduction to Zn and Fe, respectively, while producing high quality syngas. A preliminary economic assessment that assumes a natural gas price of 11.9 US$/MWh and credit for zinc sale at 750 US$/metric ton, indicates a competitive cost of hydrogen production at 6.0 US$/MWh, based on its high heating value. The proposed combined process offers the possibility of co-producing metals and syngas in autothermal non-catalytic reactors, with significant avoidance of CO2 emission.