화학공학소재연구정보센터
Journal of Applied Polymer Science, Vol.86, No.12, 3160-3165, 2002
Electrochemical degradation of polyfuran in wet acetonitrile and aqueous solutions
The degradation of polyfuran in a wet acetonitrile solution and in an aqueous solution has been investigated with a cyclic voltammetry technique, along with Fourier transform infrared and Fourier transform Raman spectroscopy techniques. Infrared spectroscopy shows that the main defects that exist in polyfuran after cycling in dried acetonitrile are mainly saturated C-H structures, whereas those after cycling in an aqueous solution are mainly carbonyl groups in the polymer chain. This may be because polyfuran can undergo degradation through a crosslinking mechanism in a dried acetonitrile solution, whereas in an aqueous solution, it undergoes degradation through a nucleophilic attack mechanism. Raman spectroscopy shows that not all the furan rings are involved in the degradation process, although the electrochemical activity of polyfuran is totally lost in an aqueous solution after only one cycle. The sites that are sensitive to the degradation process may be the electrochemically active sites, that is, the positively charged sites in polyfuran chains.