Journal of Chemical Physics, Vol.117, No.21, 9695-9702, 2002
Ground state and excitation dynamics in Ag doped helium clusters
We present a quantum Monte Carlo study of the structure and energetics of silver doped helium clusters AgHen for n up to 100. Our simulations show the first solvation shell of the Ag atom to include roughly 20 He atoms, and to possess a structured angular distribution. Moreover, the P-2(1/2)<--S-2(1/2) and P-2(3/2)<--S-2(1/2) electronic transitions of the embedded silver impurity have been studied as a function of the number of helium atoms. The computed spectra show a redshift for nless than or equal to15 and an increasing blueshift for larger clusters, a feature attributed to the effect of the second solvation shell of He atoms. For the largest cluster, the computed excitation spectrum is found in excellent agreement with the ones recorded in superfluid He clusters and bulk. No signature of the direct formation of the proposed AgHe2 exciplex is present in the computed spectrum of AgHe100. To explain the absence of the fluorescent D-2 line in the experiments, a relaxation mechanism between the P-2(3/2) and the P-2(1/2) states is proposed on the basis of the partial overlap of the excitation bands in the simulated spectra.