Journal of Colloid and Interface Science, Vol.255, No.2, 323-331, 2002
Electrokinetic characterization of porous plugs from streaming potential coupled with electrical resistance measurements
The zeta potential of mixed nickel-iron oxide particles is evaluated by a new laboratory instrument. This latter allows the measurement of streaming potential together with the electrical resistance of porous plugs. The conductivity of electrolyte inside plug (pore conductivity) is deduced from electrical resistance measurements and is used together with streaming potential to evaluate the zeta potential by accounting for the surface conduction phenomenon. It is shown that neglecting the surface conduction phenomenon leads to a substantial underestimation of the zeta potential. The coupled measurements of streaming potential and plug electrical resistance yield zeta potential values that are in very good agreement with those obtained by electrophoresis. The densification of the porous plug with increasing pressure increments is put in evidence by the decrease in measured streaming potentials. Electrical resistance measurements make it possible to account for the increase in surface conductivity resulting from the more compacted structure of the plug. By doing so, the calculated zeta potential is found to be virtually independent of the pressure difference involved in streaming potential experiments, whereas the negligence of surface conduction phenomenon leads to a decrease in the apparent zeta potential with increasing pressure level.
Keywords:streaming potential;electrical resistance;pore conductivity;zeta potential;surface conduction;porous plug