HWAHAK KONGHAK, Vol.41, No.1, 20-25, February, 2003
니켈촉매를 이용한 메탄의 부분산화에 의한 합성가스 제조
Partial Oxidation of Methane to Synthesis Gas over Ni Catalysts
E-mail:
초록
메탄의 부분산화에 의하여 합성가스를 제조하였다. 촉매는 니켈 담지 촉매를 사용하였으며, 담지된 니켈의 양은 10-15 wt%이었다. 담체로는 BaO, CaO, MgO를 사용하였다. 촉매는 함침법으로 제조하였으며, 반응은 CH4 : O2의 비가 2 : 1, 1 atm, 750 ℃에서 수행하였다. 반응결과, MgO를 담체로 사용하였을 때 가장 좋은 촉매활성을 보여주었으며, 니켈의 담지량이 13 wt%일 때 촉매의 활성이 가장 좋았다. 이 13 wt% Ni/MgO 촉매의 경우 80%의 메탄 전화율과 93% 및 94%의 CO 및 H2 선택도를 각각 얻을 수 있었다. 또한 이 촉매는 약 180시간 정도의 반응 후에도 촉매의 활성이 감소하지 않았다. 논란 중인 반응 기구에 대하여 조사해 보기 위하여 펄스방식으로 반응물을 투입하며 촉매 상ㆍ하층의 온도를 측정하였고, 반응시간에 따른 반응물과 생성물의 몰수 변화, 그리고 O2-TPD 실험을 수행하였다. 그 결과 메탄으로부터 합성가스가 생성되는 경로는 2단계반응으로써 메탄이 완전 산화되어 CO2와 H2O가 생성되고, 이 생성된 CO2 및 H2O가 미반응 메탄과 각각 개질반응을 하여 합성가스가 생성됨을 알 수 있었다.
Synthesis gas production by the partial oxidation of methane has been investigated using BaO, CaO and MgO supported Ni catalysts. The catalysts were prepared by the impregnation method. The reaction was carried out at 1 atm, 750 ℃, and CH4: O2=2 : 1. The highest catalytic activity was obtained with MgO support when Ni loading was 13 wt%. With the 13 wt% Ni/MgO catalyst, methane conversion was 80%, and CO and H2 selectivities were 93% and 94%, respectively. The activity of the catalyst remained nearly constant after 180 h of the reaction. To investigate the reaction mechanism of this reaction, the temperature of the catalyst bed at top and bottom of the bed were measured with pulses of the reactants (CH4 : O2=2:1); the changes in the moles of the reactants and products were determined with time; and O2-TPD experiment was carried out. From the results, it is deduced that the reaction takes place by a two-step reaction - first, total oxidation of methane to CO2 and H2O takes place, and then the produced CO2 and H2O are further reacted with CH4 to give synthesis gas.
- Lewis RJ, Hawley's Condensed Chemical Dictionary, 12th ed., Van Nostrand Reinhold, New York, 810 (1993)
- Lacombe S, Geantet C, Mirodatos C, J. Catal., 151(2), 439 (1995)
- Wang DJ, Rosynek MP, Lunsford JH, J. Catal., 155(2), 390 (1995)
- Gesser HD, Hunter NR, Catal. Today, 42(3), 183 (1998)
- Hutchings GJ, Taylor SH, Catal. Today, 49(1-3), 105 (1999)
- Pena MA, Gomez JP, Fierro JL, Appl. Catal. A: Gen., 144(1-2), 7 (1996)
- Craciun R, Shereck B, Gorte RJ, Catal. Lett., 51(3-4), 149 (1998)
- Trimm DL, Catal. Today, 49(1-3), 3 (1999)
- Luo JZ, Yu ZL, Ng CF, Au CT, J. Catal., 194(2), 198 (2000)
- Moon KI, Kim CH, Choi JS, Lee SH, Kim YG, Lee JS, HWAHAK KONGHAK, 35(6), 883 (1997)
- Moon KI, Kim CH, Choi JS, Lee SH, Kim YG, Lee JS, HWAHAK KONGHAK, 35(6), 890 (1997)
- Inui T, Ichino K, Matsuoka I, Takeguchi T, Iwamoto S, Pu SB, Nishimoto SI, Korean J. Chem. Eng., 14(6), 441 (1997)
- Onstot WJ, Minet RG, Tsotsis TT, Ind. Eng. Chem. Res., 40(1), 242 (2001)
- Zhang K, Kogelschatz U, Eliasson B, Energy Fuels, 15(2), 395 (2001)