화학공학소재연구정보센터
Journal of Chemical Physics, Vol.118, No.1, 337-339, 2003
Two regimes of thermal resistance at a liquid-solid interface
Using nonequilibrium molecular dynamics simulations in which a temperature gradient is imposed, we determine the thermal resistance of a model liquid-solid interface. Our simulations reveal that the strength of the bonding between liquid and solid atoms plays a key role in determining interfacial thermal resistance. Moreover, we find that the functional dependence of the thermal resistance on the strength of the liquid-solid interactions exhibits two distinct regimes: (i) exponential dependence for weak bonding (nonwetting liquid) and (ii) power law dependence for strong bonding (wetting liquid). The identification of the two regimes of the Kapitza resistance has profound implications for understanding and designing the thermal properties of nanocomposite materials. (C) 2003 American Institute of Physics.