화학공학소재연구정보센터
Journal of the American Chemical Society, Vol.125, No.4, 1007-1013, 2003
Effects of hydrogen bonding on metal ion-promoted intramolecular electron transfer and photoinduced electron transfer in a ferrocene-quinone dyad with a rigid amide spacer
A ferrocene-quinone dyad (Fc-Q) with a rigid amide spacer and Fc-(Me)Q dyad, in which the amide proton acting as a hydrogen-bonding acceptor is replaced by the methyl group, are employed to examine the effects of hydrogen bonding on both the thermal and the photoinduced electron-transfer reactions. The hydrogen bonding of the semiquinone radical anion with the amide proton in Fc-Q(.-) produced by the electron-transfer reduction of Fc-Q is indicated by the significant positive shift of the one-electron reduction potential of Fc-Q. The hyperfine coupling constants of Fc-Q(.-) also indicate the existence of hydrogen bonding, agreeing with those predicted by the density functional calculation. The hydrogenbonding dynamics in the photoinduced electron transfer from the ferrocene (Fc) to the quinone moiety (Q) in Fc-Q have been successfully detected in the femtosecond laser flash photolysis experiments. Thermal intramolecular electron transfer from Fc to Q in Fc-Q and Fc-(Me)Q also occurs efficiently in the presence of metal ions in acetonitrile at 298 K. The hydrogen bond formed between the semiquinone radical anion and the amide proton in Fc-Q results in remarkable acceleration of the rate of metal ion-promoted electron transfer as compared to the rate of Fc-(Me)Q in which hydrogen bonding is prohibited. The metal ion-promoted electron-transfer rates are well correlated with the binding energies of superoxide ion-metal ion complexes, which are derived from the g,, values of the ESR spectra.