Journal of the Korean Industrial and Engineering Chemistry, Vol.14, No.1, 95-102, February, 2003
Polysulfone을 이용한 bipolar막의 제조 및 전류/전압 특성
Manufacture and Current/Voltage Characteristics of Bipolar Membrane with Polysulfone
E-mail:
초록
전기투석 공정에서 bipolar막은 높은 에너지 효율로 빠른 물의 해리(water-splitting)에 의한 염으로부터 산 및 염기를 재생하는데 효과적인 도구로서 점차 주목을 받고 있다. 본 연구에서는 기계적 강도가 우수하고 내화학성 및 열적 안정성이 우수한 polysulfone을 poly(phenylene sulfide sulfone)과 공중합시켜 block copolymer (BPSf)를 제조하였다. 양/음이온 교환막 제조시 면적저항, 이온교환용량 및 함수율 등의 전기화학적 특성을 고려하여 최적 제막조건을 확립하였다. 양/음이온 교환막을 적층하여 bipolar 막을 제조하였고 음이온 교환층에 변화를 주어 전류/전압 곡선을 측정하였다. 실험 결과 양이온 교환막은 BPSf와 chlorosulfonic acid (CSA)의 몰비가 1:3인 CEM3이 가장 우수한 전기화학적 특성을 보였고, 음이온 교환막은 trie-thylamine (TEA)의 농도가 30 wt%이고, 세척하지 않은 반응액으로 제조된 AEM1이 가장 우수한 전기화학적 특성을 나타내었다. Bipolar막의 경우는 CEM3과 AEM1로 제조했을 때 가장 우수한 특성을 보였으며, 100 mA/cm2의 전류밀도에서 4.1 V의 막전위를 나타내었다.
Bipolar membranes with effective water splitting capability, are gaining increased attention as an useful tool for the reproduction of acids and bases from the corresponding salts by electrodialytic process. In our research, the block copolymer (BPSf) of polysulfone and poly(phenoylene sulfide sulfone) were synthesized, which had excellent tensile strength, chemical resistance, and thermal stability. The optimum condition for manufacturing bipolar membrane was established in consideration of electrochemical characteristics such as area resistance, ion exchange capacity, and water content. The bipolar membranes were fabricated by stacking anion over cation exchange membranes and the TEA wt% was varied on anion exchange layer and its influence on current-voltage curve was investigated. It showed that the sulfonation conditions for preparation of cation exchange membrane (CEM3) found molar ratio of BPSf to chlorosulfonic acid to be 1:3. And anion exchange membrane (AEM1) aminated with 30 wt% TEA without washing the reactant. These conditions exhibited the best electrochemical characteristics. The bipolar membrane prepared with these anion and cation exchange layers (AEM1 and CEM3), exhibited excellent electrochemical characteristics with 4.1 V membrane potential over current density of 100 mA/cm2.
- Kemperman AJB, Handbook on Bipolar Membrane Technology, Twente University Press, Enschede (2000)
- Alvarez F, Alvarez R, Coca J, Sandeaux J, Sandeaux R, Gavach C, J. Membr. Sci., 123(1), 61 (1997)
- Paleologou M, Wong PY, Thompson R, Berry RM, J. Pulp Paper Sci., 22, J1 (1996)
- Sridhar S, J. Membr. Sci., 113(1), 73 (1996)
- Sridhar S, Feldmann C, J. Membr. Sci., 124(2), 175 (1997)
- Cherif AT, Molenat J, Elmidaoui A, J. Appl. Electrochem., 27(9), 1069 (1997)
- Trivedi GS, Shah BG, Adhikary SK, Indusekhar VK, Rangarajan R, React. Funct. Polym., 32(2), 209 (1997)
- Eto R, Tanioka A, J. Colloid Interface Sci., 200(1), 59 (1998)
- Tanioka A, Shimizu K, Hosono T, Eto R, Osaki T, Colloids Surf. A: Physicochem. Eng. Asp., 159, 395 (1999)
- Trivedi GS, Shah BG, Adhikary SK, Indusekhar VK, Rangarajan R, React. Funct. Polym., 28(3), 243 (1996)
- U.S. Patent, 4,654,410 (1986)
- Kinzer KE, Lloyd DR, J. Membr. Sci., 22, 1 (1985)
- Pouchert CJ, The Aldrich Library of FT-IR Spectra, 1st ed., Aldrich Chem. Co., Wisconsin (1998)
- 최창일, 연세대학교 대학원, 석사학위논문, 서울 (1995)
- Lufrano F, Gatto I, Staiti P, Antonucci V, Passalacqua E, Solid State Ion., 145(1-4), 47 (2001)
- Eyal A, Kedem O, J. Membr. Sci., 38, 101 (1988)
- Chou TJ, Tanioka A, J. Colloid Interface Sci., 212(2), 576 (1999)