화학공학소재연구정보센터
Applied Microbiology and Biotechnology, Vol.60, No.5, 560-563, 2003
Increasing ethanol productivity during xylose fermentation by cell recycling of recombinant Saccharomyces cerevisiae
The influence of cell recycling of xylose-fermenting Saccharomyces cerevisiae TMB3001 was investigated during continuous cultivation on a xylose-glucose mixture. By using cell recycling at the dilution rate (D) of 0.05 h(-1), the cell-mass concentration could be increased from 2.2 g l(-1) to 22 g l(-1). Consequently, the volumetric ethanol productivity increased ten-fold, from 0.5 g l(-1) h(-1) to 5.35 g l(-1) h(-1). By increasing the biomass concentration, the xylose consumption rate increased from 0.75 g xylose l(-1) h(-1) without recycling to 1.9 g l(-1) h(-1) with recycling. The specific ethanol productivity was in the range of 0.23-0.26 g g(-1) h(-1) with or without cell recycling, showing that an increased cell-mass concentration did not influence the efficiency of the yeast.