Inorganic Chemistry, Vol.42, No.3, 814-820, 2003
Peripheral metal-ion binding to tris(thia-oxo crown) porphyrazines
We report the preparation and solution properties of metal-free [1b(H-2)] and cobalt [1c(Co)] porphyrazines (pz's), where three pyrroles are functionalized with a S2O3 crown ether for metal-ion binding and the fourth pyrrole is appended with two long-chain alcohols (bis((11 -hydroxyundecyl)thio)) for potential use as surface anchors. Compounds 1b(H2) and 1c(Co) exhibit ion-specific optical changes in the presence of Ag+ and Hg2+. Binding of Ag+ to 1b(H2) is described by a 1:1 binding isotherm, with K-D similar to 147 muM, whereas binding of Hg2+ to 1b(H-2) appears more complex. For 1c(Co), binding of Ag+ and Hg2+ also can be fit to a 1:1 isotherm, with K-D similar to 109 and 83 muM, respectively. All four titrations show nonisosbesticity, including those apparently describable by the 1:1 isotherm, which indicates that there are intermediate stages as multiple ions bind. Neither 1b(H2) or 1c(Co) gives optical responses to Ni2+, Zn2+, Pb2+, or Cu2+ or to alkali (Li+, Na+, K+, and Cs+) and alkaline earth (Mg2+, Ca2+, and Ba2+) metal ions. Nonetheless, "hard" ions are sensed electrochemically: Na+ and Li+ strongly shift the pz/pz(-) couple of 1b(H2) and Co-III/Co-II couple of 1c(Co). For the addition of 4 equiv of Li+ to 1c(Co), the Co-III/Co-II shifts +40 mV, and for the addition of 4 equiv of Na+ to 1c(Co), the shift is +155 mV. The shifted redox waves of 1c(Co) all retain their reversibility. In contrast, for the addition of either 4 equiv of Li+ or Na+ to 1b(H-2), the shifts of the pz/pz(-) couple are essentially the same, similar to170 mV, and the shifted redox waves become broadened and less reversible, due to ion-induced aggregation. For 1c(Co) the shape of the titration curves [M]/[1b(H-2)] versus E-1/2 is concave to the x-axis, implying cooperative binding of multiple M+ ions as part of the redox/binding system of equilibria.