화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.14, No.2, 195-201, April, 2003
HMX 결정 표면에 NTO 결정의 응집현상의 관한 연구
A Study on Agglomeration between NTO and HMX Crystals
E-mail:
초록
Cyclotetramethylene tetranitramine (HMX) 결정 표면에 3-nitro-1,2,4-triazole-5-one (NTO) 결정을 응집시키는 연구가 회분식 냉각 결정화기에서 수행되었다. 용액에서 NTO 결정 생성에 대한 2차핵생성속도와 응집속도가 결정화 조업조건에 따라 on-line 분석되었다. 종을 이용한 2차핵생성에서 과포화가 응집을 형성시키는데 가장 중요한 인자였다. 종의 농도, 과포화도, 교반속도 등의 실험변수가 조사되었다. NTO의 2차 핵생성속도는 종의 농도가 증가함에 따라 증가하였다. HMX 결정표면에 응집 메커니즘은 othorkinetic 메커니즘과 일치하며 과포화의 3.2승 및 입자수의 2승에 의존하였다. 결과적으로 둔감화약과 민감화약의 응집은 화약의 민감성을 감소시키는 방법이 될 수 있다.
Agglomeration between 3-nitro-1,2,4-triazole-5-one (NTO) and cyclotetramethylene tetranitramine (HMX) crystals was investigated in a batch cooling crystallizer. Secondary nucleation rate and agglomeration rate were measured diractly during the crystallization. In the secondary nucleation using a seed, the supersaturation was the most important parameter in producing the agglomerated particles. The influences of concentrationof HMX seeds, supersaturation, and agitation rate were discussed. The secondary nucleation of NTO crystals by seeding HMX crystals increased as the seed concentration increased. The agglomeration kinetic was correlated with the 3.2nd power of the solution supersaturation and the 2nd power of the number of the suspened particles. Othorkinetic mechanism was found in the agglomeration between NTO and HMX crystals. The agglomeration between insensitive and sensitive explosives may be a method to reduce the sensitivity of explosive compounds.
  1. Mullin JW, Crystallization, Butterworth Heinemann, Oxford (1993)
  2. vander Heijden AEDM, van Rosmalen GM, Industrial Mass Crystallization, Handbook of Crystal Growth 2 Bulk Crystal Growth Part A: Basic Techniques, ed. D.J.J. Hurle, Elsevier, Amsterdam (1994)
  3. Blandin AF, Rivoire A, Mangin D, Klein JP, Bossoutrot JM, Part. Part. Syst. Charact., 17, 16 (2000) 
  4. Kawashima Y, Ohno H, Takenaka H, J. Pharm. Sci., 70, 913 (1981) 
  5. Kwashima Y, Kurachi Y, Takenaka H, Powder Technol., 32, 155 (1982) 
  6. Kawashima Y, Okumura M, Takenaka H, Kojima A, J. Pharm. Sci., 73, 1535 (1984) 
  7. Sohenl O, Mullin JW, Jone AG, Ind. Eng. Chem. Res., 27, 1721 (1988) 
  8. Hirasawa I, Kaneko S, Kanai Y, Hosoya S, Okuyama K, Kamahara T, J. Cryst. Growth, 237, 2183 (2002) 
  9. Kim KJ, J. Cryst. Growth, 208, 569 (2000) 
  10. Kim KJ, Kim KM, Powder Technol., 122(1), 46 (2002) 
  11. Dobratz BM, LLNL Explosives Handbook: Properties of Chemical Explosive Simulants: UCRL-52997, Livemore, CA, 16 (1981)
  12. Minutes of the Technical Meeting for the Working Party Explosive. Joint Ordnance Commanders' Group for Munitions Development, Working Party for Explosives, U.S. Air Force Academy, CO (1987)
  13. Kim KJ, Kim MJ, Lee JM, Kim SH, Kim HS, Park BS, Fluid Phase Equilib., 146(1-2), 261 (1998) 
  14. Mezger M, Nicolich S, Yacizi R, Kalyon D, Energetic Materials: Iginition, Combustion, and Detonation, 32nd International Annual Conference of ICT, 32, Karlsruhe, Federal Republic of Germany (2001)
  15. Radwan MA, Energetic Materials Iginition, Combustion and Detonation, 32nd International Annual Conference of ICT, 44, Karlsruhe, Federal Republic of Germany (2001)
  16. Heath AR, Fawell PD, Bahri PA, Swift JD, Part. Part. Syst. Charact., 19, 84 (2002) 
  17. Barrett P, Glennon B, Part. Part. Syst. Charact., 16(5), 207 (1999) 
  18. Sparks RG, Dobbs CL, Part. Part. Syst. Charact., 10, 279 (2002) 
  19. Hollander ED, Derksen JJ, Portela LM, Van den Akker HEA, AIChE J., 47(11), 2425 (2001)