화학공학소재연구정보센터
HWAHAK KONGHAK, Vol.41, No.2, 174-185, April, 2003
Water in Oil 마이크로에멀젼을 이용한 실리카 나노입자 제조
Preparation of Silica Nanoparticles Using Water in Oil Microemulsion
E-mail:
초록
본 연구에서는 water-in-oil(W/O) microemulsion을 이용하여 암모니아를 촉매로 사용한 tetraethyl orthosilicate(TEOS)의 가수분해 반응에 의하여 실리카 나노입자를 제조하였다. 먼저 단일상의 W/O microemulsion이 존재하는 영역을 결정하기 위하여 오일, 계면활성제, 암모니아 수용액의 삼성분으로 이루어진 시스템에 대하여 3종류의 계면활성제와 5종류의 오일을 사용하여 상평형 실험을 수행한 결과, 해당 시스템의 상거동은 계면활성제와 오일의 종류에 따라 큰 영향을 받는 것을 확인하였으며, 일반적으로 단일상의 W/O 마이크로에멀젼 영역은 사용된 오일의 사슬 길이가 길어질수록 넓어지는 것을 알 수 있었다. 상평형 실험 결과를 바탕으로 단일상의 마이크로에멀젼 영역에서 입자 제조 실험을 수행하였으며, 입자의 평균 크기가 비교적 균일한 구형의 실리카 입자를 얻을 수 있었다. Transmission electron microscopy 측정으로부터 입자의 평균 크기, 분포 및 생성 개수는 실험에 사용한 단일상의 W/O 마이크로에멀젼 조성에 영향을 받으며, 특히 마이크로에멀젼 내에 분산되어 있는 암모니아 수용액의 함량에 가장 큰 영향을 받는 것을 알 수 있었다.
Silica nanoparticles were synthesized by the ammonia-catalyzed hydrolysis of tetraethyl orthosilicate (TEOS) using water-in-oil (W/O) microemulsion. Phase behavior experiments were performed to characterize single phase W/O microemulsion region in ternary systems containing ammonia solution, surfactant, and oil, where 3 different types of surfactants and 5 different kinds of oils were used during the experiments. It was found that both surfactant and oil caused a substantial change in microemulsion phase behavior and microemulsion region increased with an increase in the alkyl chain length of an oil. With the information of phase behavior experiments, silica nanoparticles prepared using single phase W/O microemulsion showed that relatively monodisperse particles of spherical shape were obtained. Photographs from transmission electron microscopy showed that average particle size, particle size distribution and number of particles formed were dependent on microemulsion composition, especially contents of ammonia solution solubilized in the microemulsion region.
  1. Aldinger F, Kalic HJ, Chem. Int. Ed. Eng., 26, 371 (1987) 
  2. Yoldas BE, J. Appl. Chem. Biotechnol., 23, 803 (1973)
  3. Yoldas BE, Ceram. Bull., 54, 286 (1975)
  4. Pierson HO, Assessing and Quantifying the Impact Sol-Gel Production of High Performance Ceramics and Glasses, Marco Lsland, Florida (1989)
  5. Chang CL, Fogler HS, AIChE J., 42(11), 3153 (1996) 
  6. Chang CL, Fogler HS, Langmuir, 13(13), 3295 (1997) 
  7. Towey TF, Khan-Lodhi A, Robinson BH, J. Chem. Soc.-Faraday Trans., 86, 3757 (1990) 
  8. Nagy JB, Derouancd EG, Gourgue A, Lufimpadio N, Ravet I, Verfailie JP, Physico-Chemical Characterizationof Microemulsions: Preparation of Monodisperse Colloidal Metal Boride Particles, Insurfactant in Solution, (ed. Mittal, K.L.), Plenum Press, New York, 10 (1991)
  9. Kamal MR, Kuo Y, Doan PH, Polym. Eng. Sci., 15, 863 (1975) 
  10. Eastoe J, Robinson BH, Steytler DC, Thorn-Lesson D, Adv. Colloid Interface Sci., 36, 1 (1991) 
  11. Sjoblom J, Lindberg R, Friberg SE, Adv. Colloid Interface Sci., 65, 125 (1996) 
  12. Shinoda K, Lindman B, Langmuir, 3, 135 (1987) 
  13. Kon-No K, Surf. Colloid Sci., 15, 125 (1993)
  14. Darab JG, Pfund DM, Fulton JL, Linehan JC, Capel M, Ma YJ, Langmuir, 10(1), 135 (1994) 
  15. Ward AJI, Friberg S, MRS Bull., 41 (1989)
  16. Modes S, Lianos P, J. Phys. Chem., 93, 5854 (1989) 
  17. Arriagada FJ, Osseoasare K, J. Colloid Interface Sci., 170(1), 8 (1995) 
  18. Arriagada FJ, OsseoAsare K, Colloids Surf., 50, 321 (1990) 
  19. Arriagada FJ, OsseoAsare K, Colloids Surf., 69, 105 (1992) 
  20. Arriagada FJ, OsseoAsare K, J. Disp. Sci. Technol., 15, 59 (1994)
  21. Arriagada FJ, Osseo-Asare K, J. Colloid Interface Sci., 211(2), 210 (1999) 
  22. HouMJ, Shah DO, Langmuir, 3, 1086 (1987) 
  23. Bansal VK, Shah DO, O'Connell JP, J. Colloid Interface Sci., 75, 462 (1980) 
  24. Johnson K, Shah DO, J. Colloid Interface Sci., 107, 269 (1985) 
  25. Leong YS, Candau F, Pouyet G, Canau SJ, J. Colloid Interface Sci., 101, 167 (1984) 
  26. DeGennes PG, Joanny JF, J. Chem. Phys., 86, 552 (1984)
  27. Jung KY, Kim MC, Park SJ, Lee ES, Lee MC, Park SK, Lim JC, J. Korean Ind. Eng. Chem., 13(6), 551 (2002)