화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.20, No.3, 566-571, May, 2003
Low Cost Growth Route for Single-walled Carbon Nanotubes from Decomposition of Acetylene over Magnesia Supported Fe-Mo Catalyst
E-mail:
A large amount of single wall carbon nanotubes (SWNTs) was successfully produced by thermal decomposition of C2H2 at 800 ℃ over magnesia supported Fe-Mo bimetallic catalysts in a tubular flow reactor under an atmosphere of hydrogen flow. The growth density of SWNTs increased with increasing the weight percent of the catalyst metals (wt% ratio of two metals: 50 : 50) supported on magnesia (MgO) from 5 to 30 wt%. The yield of SWNTs reached 144.3% over 30 wt% metal-loaded catalyst. Raman measurements showed the growth of bundle type SWNTs with diameters ranging from 0.81 to 1.96 nm. The growth of SWNTs was also identified by thermal gravimetric analysis (TGA) and Raman spectroscopy.
  1. Alvarez EW, Kitiyanan B, Borgna A, Resasco ED, Carbon, 39, 547 (2001) 
  2. Bandow S, Asaka S, Saito Y, Rao AM, Grigorian L, Richter E, Eklund PC, Phys. Rev. Lett., 80, 3779 (1998) 
  3. Bethune SD, Kiang HC, deVires SM, Gorman G, Savoy R, Vazquez J, Beyers R, Nature, 363, 605 (1993) 
  4. Chapelle DLLM, Lefrant S, Journet C, Maser W, Bernier P, Loiseau A, Carbon, 36, 705 (1998) 
  5. Colomer JF, Stephan C, Lefrant S, Tendeloo VG, Willems I, Konya Z, Fonseca A, Laurent C, Nagy BJ, Chem. Phys. Lett., 317, 83 (2000) 
  6. Cowley YJM, Nikollaev P, Thess A, Smalley ER, Chem. Phys. Lett., 265, 379 (1997) 
  7. Dai H, Rinzel GA, Nikolaev P, Thess A, Colbert TD, Smalley ER, Chem. Phys. Lett., 260, 471 (1996) 
  8. Eklund PC, Holden JM, Jishi RA, Carbon, 33(7), 959 (1995) 
  9. Guo T, Nikolaev P, Thess A, Colbert TD, Smalley ER, Chem. Phys. Lett., 243, 49 (1995) 
  10. Hafner HJ, Bronikowski JM, Azamian RB, Nikolaev P, Rinzler GA, Colbert TD, Smith AK, Smalley ER, Chem. Phys. Lett., 269, 195 (1998)
  11. Hernadi K, Fonseca A, Nagy BJ, Bernaerts D, Lucas AA, Carbon, 34(10), 1249 (1996) 
  12. Iijima S, Ichihashi T, Nature, 363, 603 (1993) 
  13. Kibria AKMF, Mo YH, Nahm KS, Catal. Lett., 71(3-4), 229 (2001)
  14. Fazle Kibria AKM, Mo YH, Yun MH, Kim MJ, Nahm KS, Korean J. Chem. Eng., 18(2), 208 (2001)
  15. Kitiyanan B, Alvarez EW, Harwell HJ, Resasco ED, Chem. Phys. Lett., 317, 497 (2000) 
  16. Kuzmany H, Burger B, Thess A, Smalley RE, Carbon, 36(5-6), 709 (1998) 
  17. Mintmire WJ, Dunlap IB, White TC, Phys. Rev. Lett., 68(5), 631 (1992) 
  18. Mo YH, Kibria AKMF, Nahm KS, Synth. Met., 122, 443 (2001) 
  19. Park YS, Kim KS, Jeong HJ, Kim WS, Moon JM, An KH, Bae DJ, Lee YS, Park GS, Lee YH, Synth. Met., 126, 245 (2002) 
  20. Peigney A, Laurent C, Dobigeon F, Rousset A, J. Mater. Res., 12(3), 613 (1997)
  21. Rao AM, Richter E, Bandow S, Chase B, Eklund PC, Williams KA, Fang S, Subbaswamy KR, Menon M, Thess A, Smalley RE, Dresselhaus G, Dresselhaus MS, Science, 275(5297), 187 (1997) 
  22. Saito S, Science, 278(5335), 77 (1997) 
  23. Shi Z, Lian Y, Liao FH, Zhou X, Gu Z, Zhang Y, Iijima S, Li H, Yue TK, Zhang SL, J. Phys. Chem. Solids, 61, 1031 (2000) 
  24. Tang S, Zhong XZ, Sun L, Liu L, Lin J, Shen XZ, Tan LK, Chem. Phys. Lett., 350, 19 (2001) 
  25. Wong EW, Sheehan PE, Lieber CM, Science, 277(5334), 1971 (1997)