화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.14, No.4, 475-480, June, 2003
가압유동층에서 수평전열관의 국부열전달 특성
Local Heat Transfer Characteristics of the Horizontal Tube in a Pressurized Fluidized Bed
E-mail:
초록
상온의 가압유동층에서 수평 전열관과 유동층간의 국부 및 총괄열전달 특성을 연구하였다. 조업 변수는 입자의 크기(0.18 ~ 0.85 nm), 유동화속도(Ug/Umf=1.25 ~ 2.0) 그리고 유동층 압력(0.1 ~ 0.8 MPa) 등이 수평전열관의 국부열전달계수에 미치는 영향을 검토하였다. 그 결과 유동층영역 내 수평전열관의 국부열전달계수는 전열관의 측면(90°)에서 가장 높은 값을 얻었으며, 전열관의 상부(0°)에서는 비유동 정제층이 존재하여 상대적으로 낮은 열전달계수 값을 나타내었다. 총괄열전달계수는 유동화속도와 압력의 증가에 따라 증가하였지만, 입자의 크기가 커지면 총괄열전달계수는 감소하였다. 또한 가압유동층에서 총괄열전달계수는 조업변수의 함수에 의한 무차원군의 상관관계식으로 도출되었다.
Local and overall heat transfer characteristics between the horizontal tube and the fluidized-bed have been investigated in a cold pressurized fluidized bed. Effects of particle size (0.18 ~ 0.85 nm), fluidizing velocity (Ug/Umf=1.25 ~ 2.0) and pressure (0.1 ~ 0.8 MPa) on the local heat transfer coefficient have been examined. The local heat transfer coefficient has exhibited highest value at the side of the horizontal tube (90°) while the value at the upper region of the tube (0°) has shown a relatively lower value because the stagnation zone that exist at the region. The overall heat transfer coefficient has increased with increasing fluidizing gas velocity and pressure while it has decreased with increasing particle size. The overall heat transfer coefficients in a pressurized fluidized bed have been correlated in terms of dimensionless groups.
  1. Kunii D, Levenspiel O, Fluidization Engineering, Wiley N.Y., 265 (1991)
  2. Park YS, Son JE, HWAHAK KONGHAK, 31(3), 287 (1993)
  3. Molerus O, Schweinzer J, Heat Transfer Submerged Tubes in Pressurized Gas/Solid Fluidized Beds, Proc. 9th International Con. on Fluidized Bed Combustion, 624 (1987)
  4. Kang Y, Kim YR, Ko MH, Seo YC, Jin GT, Son JE, Kim SD, HWAHAK KONGHAK, 35(2), 282 (1997)
  5. Wiman J, Almstedt AE, Chem. Eng. Sci., 53(12), 2167 (1998) 
  6. Olsson SE, Almstedt AE, Chem. Eng. Sci., 50(20), 3231 (1995) 
  7. Karamavruc AI, Clark NN, Powder Technol., 90(3), 235 (1997) 
  8. Li HS, Huang WD, Qian RZ, Powder Technol., 83(3), 281 (1995) 
  9. Karamavruc AI, Clark NN, J. Energy Researces Technol., 118, 214 (1996)
  10. Saxena SC, Dewan SS, Int. Commun. Heat Mass Transf., 23, 655 (1996) 
  11. Vadivel R, Vedamurthy VN, An Investigation of the Influence of Bed Parameters on the Variation of the Local Radiative and Total Heat Transfer Coefficients Around an Embeded Horizontal Tube in a Fluidized Bed Combustor, Proc. 11th International Con. on Fluidized Bed Combustion, 1159 (1980)
  12. Saxena SC, Waghmare B, Powder Technol., 96(1), 79 (1998) 
  13. Kang SH, Han KH, Jin GT, Kang Y, HWAHAK KONGHAK, 40(2), 218 (2002)
  14. Kim SW, Ahn JY, Lee DH, Kim SD, Theor. Appl. Chem. Eng., 7, 1169 (2001)
  15. Sharma KR, Powder Technol., 91(1), 75 (1997) 
  16. Vreedenberg HA, Chem. Eng. Sci., 9, 52 (1958) 
  17. Gunn DJ, Hilal N, Int. J. Heat Mass Transf., 39(16), 3357 (1996) 
  18. Song BH, Kang Y, Seo YC, Jin GT, Son JE, Kim SD, HWAHAK KONGHAK, 34(5), 619 (1996)
  19. Kang SH, Characteristics of Hydrodynamics and Heat Transfer in a Pressurized Fluidized Beds, Ph.D. Dissertation, Chungnam National University, Korea (2003)
  20. Mickly HS, Fairbanks DF, AIChE J., 1, 374 (1955) 
  21. Kang SH, Kim JS, Kim SJ, Kang Y, Kim SD, Fan LT, Powder Technol., in press (2003)
  22. Kang Y, Song PS, Yun JS, Jeong YY, Kim SD, Chem. Eng. Commun., 177, 31 (2000)