화학공학소재연구정보센터
HWAHAK KONGHAK, Vol.41, No.3, 337-342, June, 2003
질산망간의 건식-복사열분해 온도에 따른 탄탈륨 콘텐서 특성 연구
A Study on the Characteristics of Tantalum Condenser over the Pyrolysis Temperature of Manganese nitrate by using a Dry-Radiational Furnace
E-mail:
초록
질산망간에 대한 기존의 습식-대류열분해 대신 건식-복사열분해 방식을 사용하여 그 열분해 온도에 따른 탄탈륨 콘덴서의 고체전해질인 이산화망간(MnO2)층의 특성을 연구하였다. 원재료인 질산망간의 TG/DSC 분석결과 탈수(dehydration)공정을 거쳐 180-230 ℃ 온도에서 MnO2 생성반응이 일어나며 230-250 ℃ 온도에서 MnO2 단일상이 얻어지는 것으로 확인되었다. 이를 토대로 200-300 ℃ 온도범위에서 20 ℃ 간격으로 복사 열분해 후 재양극산화를 실시한 경우 별다른 유전체 피막의 손상은 발견되지 않았으며, 240-260 ℃ 온도범위에서 열분해된 콘덴서의 내전압 및 누설전류 특성이 우수하였다. 30 wt%로 희석된 질산망간 수용액 상에서 3회 열분해공정을 반복하여 탄탈륨 콘덴서에 대하여 임피던스 및 SEM 분석을 실시한 결과 건식-복사 열분해에 의해 균일하고 안정된 이산화망간 층이 생성되며 그 열분해온도가 높을수록 정전용량, 유전손실, 내부저항, 주파수 성능 등의 특성이 향상되는 것이 확인되었다.
The characteristics of manganese dioxide(MnO2) layer for the solid electrolyte of tantalum condenser formed in accordance with its pyrolysis temperature by a dry-radiational pyrolysis instead of a traditional wet-convectional pyrolysis of manganese nitrate was studied. As a result of TG/DSC analysis, manganese nitrate was started to be pyrolyzed at the temperature range from 180 to 230 ℃ through dehydration process and was transformed into MnO2 single phase at the temperature range from 230 to 250 ℃. Tantalum pellets were pyrolyzed at intervals of 20 ℃ from 200 to 300 ℃ in a radiational furnace on the basis of TG/DSC results and then re-anodized. There were nothing particular physical problems on the dielectric layer after pyrolysis. The condensers pyrolyzed between 240 and 260 ℃ recorded better properties like as a higher withstanding voltage and a lower leakage current. According to the impedance and SEM analysis results on the tantalum condenser pyrolytically decomposed 3 times with 30 wt% manganese nitrate aqueous solution, it was verified that uniform and stable manganese dioxide layers were formed by a dry-radiational pyrolysis and its properties like as capacitance, dissipation factor, internal resistance and frequency dependency were improved with the increase of the pyrolysis temperature.
  1. Sharp DS, "Thin Film Capacitor Employing Semiconductive Oxide Electrolytes," U.S. Patent, 3,397,446 (1965)
  2. Yoshida A, Nishino A, "Method of Manufacturing Solid Electrolytic Capacitor," U.S. Patent, 4,046,645 (1977)
  3. Mindt W, J. Electrochem. Soc., 117, 615 (1970)
  4. Randorf RW, Licht SJ, J. Electrochem. Soc., 119, 430 (1972)
  5. Yoshida A, Nishino A, Denki Kagaku, 57(9), 902 (1989)
  6. Nishino A, Yoshida A, Hayakawa H, Proceedings of the 2nd International Symposium on MnO2, Tokyo, Japan, 305 (1980)
  7. Yoshida A, Nishino A, Denki Kagaku, 57(5), 408 (1989)
  8. Gotoh T, Abe F, Ishizu T, Yoshio M, J. Power Sources, 60, 193 (1996) 
  9. Nishino A, Yoshida A, Hayakawa H, "Method of Producing Manganese Oxide Solid Electrolyte Capacitor," U.S. Patent, No. 4,042,420 (1977)
  10. Albella JM, Fernandez-Navarrete N, Martinez-Duart JM, J. Electrochem. Soc., 127, 2180 (1980) 
  11. Hori Y, NEC Technical Report, 49(10), 68 (1996)
  12. Nishino A, J. Power Sources, 60, 137 (1996) 
  13. Kono T, Kida F, Kayamori T, Takata H, Sneda H, Date T, NEC Technical Report, 52(10), 53 (1999)
  14. Tanaka M, Hara E, Ohi M, Date T, Sato H, Ogaku T, NEC Technical Report, 50(10), 56 (1997)