- Previous Article
- Next Article
- Table of Contents
Journal of Non-Newtonian Fluid Mechanics, Vol.110, No.1, 1-25, 2003
Studies on the axisymmetric sphere - sphere interaction problem in Newtonian and non-Newtonian fluids
In this research, experimental studies have been performed on the hydrodynamic interaction between two spheres by using particle image velocimetry and measuring the force between the spheres. To approach the system as a resistance problem, a servo-driving system was set-up by assembling a microstepping motor, a ball screw and a linear ,motion guide for the particle motion. Glycerin and a dilute solution of polyacrylamide in glycerin were used as Newtonian and non-Newtonian fluids, respectively. The polymer solution behaves like a Boger fluid when the concentration is 1000ppm or less. The experimental results were compared with the asymptotic solution of Stokes equation. The result shows that fluid inertia and unsteadiness play important roles in the particle-particle interaction in the Newtonian fluid. This implies that the motion of two particles in suspension is not reversible even in the Newtonian fluid. In the non-Newtonian fluid, in addition to inertial effect, normal stress differences and viscoelasticity play important roles as expected. In dilute solutions weak shear thinning and the migration of polymer molecules in the inhomogeneous flow field also appear to affect the physics of the problem.
Keywords:hydrodynamic interaction;shear thinning;first normal stress difference;inertia;unsteadiness;migration;wall slip