화학공학소재연구정보센터
Langmuir, Vol.19, No.6, 2103-2109, 2003
Origins of anomalous micellization in diblock copolymer solutions
The phenomenon of "anomalous" micellization is investigated in dilute solutions of two nearly symmetric poly(styrene-b-isoprene) diblock copolymers, via dynamic light scattering. In two polystyrene-selective solvents, diethyl phthalate and dimethyl phthalate, the critical micelle temperatures (cmt) are clearly determined by rather abrupt increases in the hydrodynamic radius and scattered intensity upon cooling; this corresponds to "normal" micellization. In contrast, for the same polymers dissolved in two polyisoprene-selective solvents, tetradecane and qualane, anomalous micellization was consistently observed: the hydrodynamic radius exceeded 1000 Angstrom and the intensity was unusually large, over a modest temperature interval just above the cmt. We propose that anomalous micellization is due to the incipient phase separation of small amounts of polystyrene homopolymer, resulting from incomplete crossover during the sequential anionic polymerization of styrene and isoprene. In one sample, the presence of homopolymer (ca. 1 wt % of copolymer) was confirmed by chromatography, and removal of this impurity eliminated the anomalous micellization. Addition of similar amounts of polyisoprene homopolymer to the same sample induced anomalous micellization in the polystyrene-selective solvents, with the onset of the effect corresponding to the cloud point for the polyisoprene homopolymer. These observations support the proposed hypothesis; the extent to which this hypothesis may extend to previous reports of anomalous micellization is discussed.