화학공학소재연구정보센터
Polymer, Vol.44, No.5, 1469-1480, 2003
The morphology and mechanical properties of dynamic packing injection molded PP/PS blends
As a part of long-term project aimed at super polyolefin blends, in this work, we report the mechanical reinforcement and phase morphology of the immiscible blends of polypropylene (PP) and polystyrene (PS) achieved by dynamic packing injection molding (DPIM). The shear stress (achieved by DPIM) and interfacial interaction (obtained by using styrene-butadiene-styrene (SBS) as a compatibilizer) have a great effect on phase morphology thus mechanical properties. The shear-induced morphology with core in the center and oriented zone surrounding the core was observed in the cross-section areas of the samples. The phase inversion was also found to shift towards lower PS content under shear stress, at 70 wt% in the core and 30 wt% in the oriented zone, compared with 80 wt% for static samples (without shear). The tensile strength, tensile modules and impact strength were found largely increase by means of either shear stress or compatibilizer. The PS particle size is greatly reduced with adding of SBS, and the reduced particle size results in greater resistance to deformation, which causes the co-continuous structure at oriented zone change into droplet morphology. The morphology resulting from blending and processing was discussed based on effect of interfacial tension, shear rate, phase viscosity ratio and composition. The observed change of mechanical properties was explained based on the combined effect of phase morphology (droplet-matrix or co-continuous phase) and molecular orientation under shear stress. (C) 2003 Elsevier Science Ltd. All rights reserved.