Polymer, Vol.44, No.5, 1705-1710, 2003
Alignment and orientational proliferation of HEX cylinders in a polystyrene-block-polyisoprene-block-polystyrene copolymer in the presence of clay
We investigated the effect of an anisotropic silicate layer on the alignment and orientational proliferation of hexagonally packed cylinder microdomains of a block copolymer in the presence of a clay by using synchrotron small angle X-ray scattering (SAXS), theology, and transmission electron microscopy (TEM). The block copolymer employed in this study was polystyrene-block-polyisoprene-block-polystyrene copolymer (SIS). The degree of intercalation of the clay in the presence of SIS was examined by wide angle X-ray diffraction (WAXD). Almost all of the HEX cylinders in neat SIS are aligned toward the flow direction after large amplitude oscillatory shearing is applied to the specimens. However, some tactoids in nanocomposites are not aligned, although most tactoids are also aligned to the flow direction. Due to HEX cylinders near tactoids, which are not aligned to the flow direction, the orientational factor of HEX cylinders in SIS/clay nanocomposites is smaller than that of neat SIS. However, once HEX cylinders in SIS/clay nanocomposites are degenerated after experiencing body-centered cubic microdomains, the decrease in the orientational factor from original aligned HEX is smaller compared with neat SIS. (C) 2003 Elsevier Science Ltd. All rights reserved.