화학공학소재연구정보센터
HWAHAK KONGHAK, Vol.35, No.6, 928-933, December, 1997
기공성 PMDA-ODA 폴리이미드 박막의 제조 및 기체투과 특성
The Preparation and the Gas Permeation Characteristics Properties of Porous PMDA-ODA Polyimide Thin Film
초록
PMDA-ODA 폴리이미드를 합성하여 기공성 박막을 제조한 후 기체 분리막으로서의 특성을 고찰하였다. 폴리이미드 박막의 기공도는 상전이법에 의해 조절하였으며, 변수로는 비용매의 종류 및 침전시간을 변화시켰다. 또한 제조한 폴리이미드 전구체를 사용 튜브형 세라믹 막내에 코팅한 후 기공성을 주어 기체투과 특성을 고찰하였다. 비용매의 종류에 따라 finger 및 sponge형 기공형태를 보였으며 상전이법 공정시간에 따라 표면층의 경우 4nm-12㎛의 영역의 기공크기가 나타났고 기공분포도는 공정조건에 따라 조절할 수 있었다. 비용매로는 물보다는 알코올 및 유기용매를 사용할 경우에 형태학적으로 기공구조가 균일하였으며, 침전시간에 따른 기공크기 변화가 표면층에 있어 물의 경우 다른 비용매에 비해 약 17-79%의증가율을 보였다. 질소 투과도 실험에서는 투과도 범위가 약 0.26-70×10-6(mol/㎡·Pa·s)의 값을 나타내었다.
Porous PMDA-ODA polymide thin films were prepared and characterized for the gas separation membrane. The pore size of the polyimide film was controlled by the phase inversion method with various nonsolvents and immersion time. The prepared polymide precursor was coated on commercial tabular type ceramic membrane and gas permeation characteristics was investigated in porous polymide/ceramic membrane. The pore structure of finger or sponge types was formed depending on the different nonsolvents. The size of pore in polymide thin film was controlled in the range of 4nm-12㎛ with phase inversion method. In case of alcohol nonsolvents, it leads to the increased uniformity of pore structure in the morphology of polymide thin film. The average pore size in surface layer of polyimide thin film was increased by 17-79% depending on the immersion time and the different nonsolvents. In addition, the gas permeability of ceramic/polymide membrane was shown in the range of 0.26-70×10-6(mol/㎡·Pa·s)
  1. Wood AS, Mod. Plast. Int., 26 (1989)
  2. Sroog CE, J. Polym. Sci. Macromol. Rev., 11, 161 (1976) 
  3. Coleman MR, Koros WJ, J. Membr. Sci., 50, 285 (1990) 
  4. Yamamoto H, Mi Y, Stern SA, Clair AK, J. Polym. Sci. B: Polym. Phys., 28, 2291 (1990) 
  5. Hatori H, Yamada Y, Shiraishi M, J. Polym. Sci., 57, 871 (1995)
  6. Haraya K, Hwang ST, AAPG Bull., 62, 165 (1991)
  7. Beaman RG, J. Polym. Sci., 9(5), 470 (1952) 
  8. 전경용, 서종철, 한학수, 조영일, 화학공학의 이론과 응용, 2(2), 2539 (1996)
  9. Kesting RE, Mat. Sci. of Syn. Mem. (D.R. Lloyd, ed.) ACS Sym. Ser., 269 (1985)
  10. Strathmann H, Mat. Sci. of Syn. Mem. (D.R. Lloyd, ed.) ACS Sym. Ser., 269 (1985)
  11. Finker H, Mat. Sci. of Syn. Mem. (D.R. Lloyd, ed.) ACS Sym. Ser., 269 (1985)
  12. Kamide K, Iijima H, Matsuda S, Polym. J., 25, 1113 (1993) 
  13. Loeb S, Sourirajan, ACS Adv. Chem. Ser., 38, 117 (1962)
  14. Kelvin B, Office of Salinic Water Research and Development Report #17, U.S. Gov. Printing Office, Washington, D.C., August (1964)
  15. 전경용, 김한성, 한학수, 조영일, 화학공학의 이론과 응용, 3(1), 1345 (1997)