화학공학소재연구정보센터
International Journal of Heat and Mass Transfer, Vol.46, No.12, 2253-2261, 2003
Numerical simulation of developing natural convection in an enclosure due to rapid heating
Effects of thermoacoustic wave motion on the developing natural convection process in a compressible gas-filled square enclosure were investigated numerically. In the cases considered, the left wall temperature is raised rapidly (impulsively or gradually) while the right wall is held at a specified temperature. The top and the bottom walls of the enclosure considered are thermally insulated. The numerical solutions of the full Navier-Stokes equations were obtained by employing a highly accurate flux-corrected transport algorithm for the convection terms and by a central differencing scheme for the viscous and diffusive terms. The strength of the pressure waves associated with the thermoacoustic effect and resulting flow patterns are found to be strongly correlated to the rapidity of the wall heating process. Fluid thermal diffusivity was found to affect the strength of the thermoacoustic waves and the resulting interaction with the buoyancy-induced flow. (C) 2003 Elsevier Science Ltd. All rights reserved.